} /* UpdatedataFields*/ private void MakePredictions() { if (!ActiveTrainingLibraries.ModelsAreAvailable()) { // Since there are NO training models loaded; there is no point doing the work for a prediction. return; } featureVector = dbConn.FeatureDataRecLoad(image); if (featureVector == null) { featureVector = new PicesFeatureVector(raster, image.ImageFileName, null, runLog); // Since we had to compute the FeatureDatya from the raster we now need to // get the instrument data that matches it. if (instrumentData != null) { featureVector.AddInstrumentData(instrumentData); } dbConn.FeatureDataInsertRow(image.SipperFileName, featureVector); } float esd = 0.0f; float eBv = 0.0f; float filledArea = image.PixelCount; float cropWidth = 3800.0f; // (3900.0f - 200.0f); float flowRate2 = 0.5f; if (featureVector != null) { filledArea = featureVector.FilledArea; } if (sipperFile != null) { scanRate = sipperFile.ScanRate; } esd = (float)(2.0 * Math.Sqrt(filledArea * (0.096 / cropWidth) * 1000.0 * (flowRate1 / sipperFile.ScanRate) * 1000.0 / 3.1415926)); eBv = (float)((4.0 / 3.0) * Math.PI * Math.Pow(Math.Sqrt(filledArea * (chamberWidth / cropWidth) * 1000 * (flowRate1 / scanRate) * 1000.0 / Math.PI), 3)); PicesPrediction model1Prediction1 = new PicesPrediction(null, 0, 0.0f); PicesPrediction model1Prediction2 = new PicesPrediction(null, 0, 0.0f); PicesPrediction model2Prediction1 = new PicesPrediction(null, 0, 0.0f); PicesPrediction model2Prediction2 = new PicesPrediction(null, 0, 0.0f); ActiveTrainingLibraries.MakePredictions(featureVector, ref model1Prediction1, ref model1Prediction2, ref model2Prediction1, ref model2Prediction2, runLog ); if (model1Prediction1 != null) { Lib1Pred1Class.Text = model1Prediction1.ClassName; Lib1Pred1Prob.Text = model1Prediction1.Probability.ToString("##0.00%"); Lib1Pred1Votes.Text = model1Prediction1.Votes.ToString("#,##0"); } if (model1Prediction2 != null) { Lib1Pred2Class.Text = model1Prediction2.ClassName; Lib1Pred2Prob.Text = model1Prediction2.Probability.ToString("##0.00%"); Lib1Pred2Votes.Text = model1Prediction2.Votes.ToString("#,##0"); } if (model2Prediction1 != null) { Lib2Pred1Class.Text = model2Prediction1.ClassName; Lib2Pred1Prob.Text = model2Prediction1.Probability.ToString("##0.00%"); Lib2Pred1Votes.Text = model2Prediction1.Votes.ToString("#,##0"); } if (model1Prediction2 != null) { Lib2Pred2Class.Text = model2Prediction2.ClassName; Lib2Pred2Prob.Text = model2Prediction2.Probability.ToString("##0.00%"); Lib2Pred2Votes.Text = model2Prediction2.Votes.ToString("#,##0"); } if (featureVector != null) { AreaMMSquare.Text = featureVector.AreaMMSquare.ToString("#,##0.000"); } ESD.Text = esd.ToString("#,##0.00"); EBv.Text = eBv.ToString("##0.0000"); return; } /* MakePredictions */
private void ImportImage(PicesDataBase threadConn, String fileName ) { String rootName = OSservices.GetRootName(fileName); String picesRootName = sipperFileName + "_" + rootName; PicesDataBaseImage dbi = threadConn.ImageLoad(picesRootName); if (dbi != null) { return; } PicesRaster r = new PicesRaster(fileName); r = r.Padded(2); PicesFeatureVector fv = new PicesFeatureVector(r, picesRootName, null, runLog); fv.ExampleFileName = picesRootName; int imageId = 0; bool successful = false; uint centroidRow = (uint)(0.5f + fv.CentroidRow); uint centroidCol = (uint)(0.5f + fv.CentroidCol); if ((centroidRow < 0) || (centroidRow > r.Height)) { centroidRow = (uint)(r.Height / 2); } if ((centroidCol < 0) || (centroidCol > r.Width)) { centroidCol = (uint)(r.Width / 2); } threadConn.ImageInsert(r, picesRootName, sipperFileName, 0, 0, 0, (uint)r.Height, (uint)r.Width, (uint)fv.OrigSize, 3, extractionLogEntryId.LogEntryId, extractionLogEntryId.LogEntryId, centroidRow, centroidCol, unknownClass, 1.0f, null, 0.0f, null, 0.0f, // depth, 0.0f, // Image Size null, ref imageId, ref successful ); if (successful) { threadConn.FeatureDataInsertRow(sipperFileName, fv); } else { RunLogAddMsg("RootName[" + rootName + "] Failed: " + threadConn.LastErrorDesc() + "\n"); } } /* ImportImage */