Exemple #1
0
        } /* UpdatedataFields*/

        private void MakePredictions()
        {
            if (!ActiveTrainingLibraries.ModelsAreAvailable())
            {
                // Since there are NO training models loaded;  there is no point doing the work for a prediction.
                return;
            }

            featureVector = dbConn.FeatureDataRecLoad(image);
            if (featureVector == null)
            {
                featureVector = new PicesFeatureVector(raster, image.ImageFileName, null, runLog);
                // Since we had to compute the FeatureDatya from the raster we now need to
                // get the instrument data that matches it.
                if (instrumentData != null)
                {
                    featureVector.AddInstrumentData(instrumentData);
                }

                dbConn.FeatureDataInsertRow(image.SipperFileName, featureVector);
            }

            float esd        = 0.0f;
            float eBv        = 0.0f;
            float filledArea = image.PixelCount;
            float cropWidth  = 3800.0f; // (3900.0f - 200.0f);
            float flowRate2  = 0.5f;

            if (featureVector != null)
            {
                filledArea = featureVector.FilledArea;
            }

            if (sipperFile != null)
            {
                scanRate = sipperFile.ScanRate;
            }

            esd = (float)(2.0 * Math.Sqrt(filledArea * (0.096 / cropWidth) * 1000.0 * (flowRate1 / sipperFile.ScanRate) * 1000.0 / 3.1415926));
            eBv = (float)((4.0 / 3.0) * Math.PI * Math.Pow(Math.Sqrt(filledArea * (chamberWidth / cropWidth) * 1000 * (flowRate1 / scanRate) * 1000.0 / Math.PI), 3));

            PicesPrediction model1Prediction1 = new PicesPrediction(null, 0, 0.0f);
            PicesPrediction model1Prediction2 = new PicesPrediction(null, 0, 0.0f);
            PicesPrediction model2Prediction1 = new PicesPrediction(null, 0, 0.0f);
            PicesPrediction model2Prediction2 = new PicesPrediction(null, 0, 0.0f);

            ActiveTrainingLibraries.MakePredictions(featureVector,
                                                    ref model1Prediction1,
                                                    ref model1Prediction2,
                                                    ref model2Prediction1,
                                                    ref model2Prediction2,
                                                    runLog
                                                    );

            if (model1Prediction1 != null)
            {
                Lib1Pred1Class.Text = model1Prediction1.ClassName;
                Lib1Pred1Prob.Text  = model1Prediction1.Probability.ToString("##0.00%");
                Lib1Pred1Votes.Text = model1Prediction1.Votes.ToString("#,##0");
            }

            if (model1Prediction2 != null)
            {
                Lib1Pred2Class.Text = model1Prediction2.ClassName;
                Lib1Pred2Prob.Text  = model1Prediction2.Probability.ToString("##0.00%");
                Lib1Pred2Votes.Text = model1Prediction2.Votes.ToString("#,##0");
            }

            if (model2Prediction1 != null)
            {
                Lib2Pred1Class.Text = model2Prediction1.ClassName;
                Lib2Pred1Prob.Text  = model2Prediction1.Probability.ToString("##0.00%");
                Lib2Pred1Votes.Text = model2Prediction1.Votes.ToString("#,##0");
            }

            if (model1Prediction2 != null)
            {
                Lib2Pred2Class.Text = model2Prediction2.ClassName;
                Lib2Pred2Prob.Text  = model2Prediction2.Probability.ToString("##0.00%");
                Lib2Pred2Votes.Text = model2Prediction2.Votes.ToString("#,##0");
            }

            if (featureVector != null)
            {
                AreaMMSquare.Text = featureVector.AreaMMSquare.ToString("#,##0.000");
            }

            ESD.Text = esd.ToString("#,##0.00");
            EBv.Text = eBv.ToString("##0.0000");

            return;
        } /* MakePredictions */
        private void  ImportImage(PicesDataBase threadConn,
                                  String fileName
                                  )
        {
            String rootName      = OSservices.GetRootName(fileName);
            String picesRootName = sipperFileName + "_" + rootName;

            PicesDataBaseImage dbi = threadConn.ImageLoad(picesRootName);

            if (dbi != null)
            {
                return;
            }

            PicesRaster r = new PicesRaster(fileName);

            r = r.Padded(2);

            PicesFeatureVector fv = new PicesFeatureVector(r, picesRootName, null, runLog);

            fv.ExampleFileName = picesRootName;

            int  imageId    = 0;
            bool successful = false;


            uint centroidRow = (uint)(0.5f + fv.CentroidRow);
            uint centroidCol = (uint)(0.5f + fv.CentroidCol);

            if ((centroidRow < 0) || (centroidRow > r.Height))
            {
                centroidRow = (uint)(r.Height / 2);
            }

            if ((centroidCol < 0) || (centroidCol > r.Width))
            {
                centroidCol = (uint)(r.Width / 2);
            }

            threadConn.ImageInsert(r,
                                   picesRootName,
                                   sipperFileName,
                                   0, 0, 0,
                                   (uint)r.Height, (uint)r.Width,
                                   (uint)fv.OrigSize,
                                   3,
                                   extractionLogEntryId.LogEntryId, extractionLogEntryId.LogEntryId,
                                   centroidRow, centroidCol,
                                   unknownClass, 1.0f, null, 0.0f, null,
                                   0.0f, // depth,
                                   0.0f, // Image Size
                                   null,
                                   ref imageId,
                                   ref successful
                                   );
            if (successful)
            {
                threadConn.FeatureDataInsertRow(sipperFileName, fv);
            }
            else
            {
                RunLogAddMsg("RootName[" + rootName + "] Failed: " + threadConn.LastErrorDesc() + "\n");
            }
        } /* ImportImage */