public double[] Run(double[] Xobdata, double[] obdatay, double[] para //,double noise ) { Parameters.Verbosity = VerbosityLevels.OnlyCritical; //Debug.Listeners.Add(new TextWriterTraceListener(Console.Out)); var optMethod = new NelderMead(); optMethod.Add(new GoldenSection(1e-8, 0.001)); optMethod.Add(new DeltaFConvergence(1e-7)); var opt = new OneDObjectiveFunc(Xobdata, obdatay, para); optMethod.Add(opt); double[] xStar; var xInit = para; try { var fstar_opt = optMethod.Run(out xStar, xInit); var output = new double[4] { xStar[0], xStar[1], xStar[2], fstar_opt }; return(output); } catch { var output = new double[4] { 100, 1000, 1000, 100000 }; return(output); } // return xStar; }
public double[] Run(double[,] Xobdata, double[] obdatay, double[] para) { Parameters.Verbosity = VerbosityLevels.OnlyCritical; // this next line is to set the Debug statements from OOOT to the Console. //Debug.Listeners.Add(new TextWriterTraceListener(Console.Out)); // var optMethod = new GradientBasedOptimization(); // var Y = ThreeDinput.GetfVactor(obdatay); // var optMethod = new GradientBasedOptimization(); // var optMethod = new GeneralizedReducedGradientActiveSet(); // var optMethod = new HillClimbing(); var optMethod = new NelderMead(); // optMethod.Add(new StochasticNeighborGenerator); // var optMethod = new NelderMead(); // optMethod.Add(new CyclicCoordinates()); // optMethod.Add(new CyclicCoordinates()); optMethod.Add(new GoldenSection(1e-7, 0.01)); // optMethod.Add(new DeltaXConvergence(1e-10)); optMethod.Add(new DeltaFConvergence(1e-6)); // optMethod.Add(new MaxSpanInPopulationConvergence(1e-3)); //optMethod.Add(new inequalityWithConstant()) var opt = new OneDObjectiveFunc(Xobdata, obdatay, para); optMethod.Add(opt); // optMethod.Add(new Inequality(opt, Xobdata, obdatay)); // optMethod.Add(new OptimizationToolbox.greaterThanConstant { constant = 0.0, index = 0 }); //optMethod.Add(new OptimizationToolbox.greaterThanConstant { constant = 0.0, index = 1 }); //optMethod.Add(new OptimizationToolbox.greaterThanConstant { constant = 0.0, index = 2 }); //optMethod.Add(new OptimizationToolbox.lessThanConstant() { constant = 0.30, index = 2 }); //optMethod.Add(new OptimizationToolbox.squaredExteriorPenalty(optMethod, 1.0)); // var p = new double[2] { para[0], para[1] }; double[] xStar; var xInit = para; try { var fstar_opt = optMethod.Run(out xStar, xInit); var output = new double[5] { xStar[0], xStar[1], xStar[2], xStar[3], fstar_opt }; // var output = new double[4] { xStar[0], xStar[1], xStar[2], fstar_opt };//1d return(output); } catch { // var output = new double[4] { 1000, 1000, 1000, 100000000 };//1d var output = new double[5] { 100, 1000, 1000, 1000, 100000000 }; return(output); } // return xStar; }
protected void RunFullTPSquared() { Random r = new Random(); double[,] desiredPath = { { 1.87, 8 }, { 2.93, 8.46 }, { 2.80, 8.41 }, { 1.99, 8.06 }, { 0.96, 7.46 }, { 0, 6.71 },{ -0.77, 5.93 }, { -1.3, 5.26 }, { -1.60, 4.81 }, { -1.65, 4.75 }, { -1.25, 5.33 }, { 0, 6.71 } }; double startAngle = 0; double endAngle = 2 * Math.PI; double iOmega = 2; double iAlpha = 0; MechSimulation sim = new MechSimulation(); BoundingBox bb = new BoundingBox(sim, 10, 10); GrashofCriteria cc = new GrashofCriteria(sim, 0); List <candidate> candidates = new List <candidate>(); while (true) //notConverged()) { // 1. Generate topologies - calling rulesets - this adds candidates to the candidates list. //2. Evaluate & Param Tuning foreach (candidate c in candidates) { if (double.IsNaN(c.f0)) { sim.Graph = c.graph; NelderMead NMOpt = new NelderMead(); NMOpt.Add(sim); //gbu.Add(new GoldenSection(.001, 20)); //gbu.Add(new BFGSDirection()); NMOpt.Add(new MaxIterationsConvergence(100)); double[] x0 = new double[8]; for (int i = 0; i < x0.GetLength(0); i++) //since I am going to assign ground pivots as they are { x0[i] = r.NextDouble(); } double[] xStar; double fStar = NMOpt.Run(out xStar, x0); // double fStar = NMOpt.Run(out xStar,8); c.f0 = fStar; } } //3. Pruning // throw out topologies (candidates) that have bad/large values of f0. //4. Guide? } SearchIO.output("***Completed!***"); }
protected override void Run() { Random r = new Random(); //1); // double[,] desiredPath ={{1.87,8},{2.93,8.46},{2.80,8.41}, // {1.99,8.06},{0.96,7.46},{0,6.71},{-0.77,5.93},{-1.3,5.26},{-1.60,4.81},{-1.65,4.75},{-1.25,5.33},{0,6.71}}; double[,] desiredPath = { { 125, 225 }, { 165.44, 217.76 }, { 189.57, 200.42 }, { 185.89, 178.49 }, { 158.65, 161.92 }, { 109.38, 135.30 }, { 57.997, 101.69 }, { 24.59, 82.07 }, { 0.33, 76.90 }, { -17.03, 91.46 }, { -13.92, 129.10 }, { -0.74, 155.01 }, { 20.73, 180.91 }, { 53.78, 205.65 }, { 88.17, 219.90 } }; double startAngle = 0; double endAngle = 2 * Math.PI; double iOmega = 2; double iAlpha = 0; MechSimulation sim = new MechSimulation(); //Below is a relation for bounding box and also the first point double bb_min, bb_max; // bb_min = StarMath.Min(desiredPath); // bb_max = StarMath.Max(desiredPath); //now that min and max are obtained - we will form a bounding box using these max and min values bb_max = 250; bb_min = 250; sim.Graph = seedGraph; // designGraph testGraph = this.seedGraph; // ev.c = new candidate(testGraph, 0); // ev.c = this.seedGraph; //bounding box - trying to contain the solutions within a particular box // BoundingBox bb = new BoundingBox(sim, bb_max,bb_min); // GrashofCriteria cc = new GrashofCriteria(sim, 0); //adding a new objective function which can be taken by the optimization program var pathObjFun = new ComparePathWithDesired(seedCandidate, desiredPath, sim); //initializing the optimization program var optMethod = new NelderMead(); //var optMethod = new GradientBasedOptimization(); optMethod.Add(new PowellMethod()); optMethod.Add(new DSCPowell(0.00001, .5, 1000)); // optMethod.Add(new GoldenSection(0.001,300)); optMethod.Add(new ArithmeticMean(0.001, 0.1, 300)); //adding simulation optMethod.Add(sim); //adding objective function to this optimization routine optMethod.Add(pathObjFun); //we are removing this since we do not have a merit function defined optMethod.Add(new squaredExteriorPenalty(optMethod, 1.0)); // optMethod.Add(bb); // optMethod.Add(cc); // convergence optMethod.Add(new MaxIterationsConvergence(100)); // optMethod.Add(new DeltaXConvergence(0.01)); optMethod.Add(new ToKnownBestFConvergence(0.0, 0.1)); optMethod.Add(new MaxSpanInPopulationConvergence(0.01)); var n = 6; var dsd = new DesignSpaceDescription(); var minX = StarMath.Min(StarMath.GetColumn(0, desiredPath)); var maxX = StarMath.Max(StarMath.GetColumn(0, desiredPath)); var minY = StarMath.Min(StarMath.GetColumn(1, desiredPath)); var maxY = StarMath.Max(StarMath.GetColumn(1, desiredPath)); var delta = maxX - minX; minX -= delta; maxX += delta; delta = maxY - minY; minY -= delta; maxY += delta; for (int i = 0; i < n; i++) { if (i % 2 == 0) { dsd.Add(new VariableDescriptor(minX, maxX)); } else { dsd.Add(new VariableDescriptor(minY, maxY)); } } // dsd.Add(new VariableDescriptor(0,300)); var LHC = new LatinHyperCube(dsd, VariablesInScope.BothDiscreteAndReal); var initPoints = LHC.GenerateCandidates(null, 100); //for each initPoints - generate the fstar value //generating random x,y values //double[] x0 = new double[8]; //for (int i = 0; i < x0.GetLength(0); i++) //since I am going to assign ground pivots as they are // x0[i] = 100*r.NextDouble(); //sim.calculate(x0); // double[] xStar; // double fStar = optMethod.Run(out xStar, x0); //// double fStar = optMethod.Run(out xStar, 8); double[] fStar1 = new double[initPoints.Count]; List <double[]> xStar1 = new List <double[]>(); for (int i = 0; i < fStar1.GetLength(0); i++) { double[] x0 = new double[n]; x0 = initPoints[i]; double[] xStar; double fStar = optMethod.Run(out xStar, x0); fStar1[i] = fStar; xStar1.Add(xStar); SearchIO.output("LHC i: " + i); } int xstarindex; SearchIO.output("fStar Min=" + StarMath.Min(fStar1, out xstarindex), 0); SearchIO.output("Xstar Values:" + xStar1[xstarindex]); SearchIO.output("***Converged by" + optMethod.ConvergenceDeclaredByTypeString, 0); SearchIO.output("Rerunning with new x values", 0); // var optMethod1 = new GradientBasedOptimization(); // optMethod1.Add(new FletcherReevesDirection()); // // optMethod1.Add(new ArithmeticMean(0.001, 0.1, 300)); // optMethod1.Add(new GoldenSection(0.001, 300)); // optMethod1.Add(sim); // optMethod1.Add(pathObjFun); // optMethod1.Add(new squaredExteriorPenalty(optMethod, 1.0)); //// optMethod1.Add(new MaxIterationsConvergence(100)); // optMethod1.Add(new ToKnownBestFConvergence(0.0, 0.1)); // // optMethod.Add(new MaxSpanInPopulationConvergence(0.01)) // double[] xStar2; // double fStar2 = optMethod1.Run(out xStar2, xStar1[xstarindex]); // SearchIO.output("New Fstar = " + fStar2, 0); //double xstarmin, xstarmax; //xstarmax = StarMath.Max(xStar1[xstarindex]); //xstarmin = StarMath.Min(xStar1[xstarindex]); //var dsd1 = new DesignSpaceDescription(); //dsd1.Add(new VariableDescriptor(xstarmin, xstarmax)); //var LHC1 = new LatinHyperCube(dsd1, VariablesInScope.BothDiscreteAndReal); //var initPoints1 = LHC.GenerateCandidates(null, 100); //double[] fstar1 = new double[initPoints1.Count]; //List<double[]> xstar_second = new List<double[]>(); //for (int i = 0; i < fstar1.GetLength(0); i++) //{ // double[] x0 = new double[n]; // x0 = initPoints[i]; // double[] xStar; // double fStar = optMethod.Run(out xStar, x0); // fstar1[i] = fStar; // xstar_second.Add(xStar); // SearchIO.output("LHC i: " + i); //} //SearchIO.output("New fStar = " + StarMath.Min(fstar1), 0); //SearchIO.output("***Converged by" + optMethod.ConvergenceDeclaredByTypeString, 0); }