// Set the current innovation covariance S_i^{-1} for this // particle. Called from // Scene_Single::predict_partially_initialised_feature_measurements() public void set_S(MatrixFixed Si) { Cholesky local_Si_cholesky = new Cholesky(Si); m_SInv.Update(local_Si_cholesky.Inverse()); m_detS = SceneLib.Determinant(Si); }
/// <summary> /// Fast version of predict filter /// </summary> /// <param name="scene"></param> /// <param name="u">Control vector of accelerations</param> /// <param name="delta_t">time step in seconds</param> public void predict_filter_fast(Scene_Single scene, Vector u, float delta_t) { Vector xv = scene.get_xv(); // Make model calculations: results are stored in RES matrices scene.get_motion_model().func_fv_and_dfv_by_dxv(xv, u, delta_t); scene.get_motion_model().func_Q(xv, u, delta_t); Vector fvRES = scene.get_motion_model().get_fvRES(); xv.Update(fvRES); Motion_Model mm = scene.get_motion_model(); MatrixFixed Pxx = scene.get_Pxx(); MatrixFixed dfv_by_dxvRES = mm.get_dfv_by_dxvRES(); MatrixFixed dfv_by_dxvRES_transposed = dfv_by_dxvRES.Transpose(); MatrixFixed QxRES = mm.get_QxRES(); Pxx.Update((dfv_by_dxvRES * Pxx * dfv_by_dxvRES_transposed) + QxRES); // Change the covariances between vehicle state and feature states foreach (Feature it in scene.feature_list) { MatrixFixed Pxy = it.get_Pxy(); Pxy.Update(dfv_by_dxvRES * Pxy); } }
/// <summary> /// Solve the matrix equation M X = B, returning X. /// </summary> /// <param name="B"></param> /// <returns></returns> public MatrixFixed Solve(MatrixFixed B) { MatrixFixed x; // solution matrix if (U_.Rows < U_.Columns) { // augment y with extra rows of MatrixFixed yy = new MatrixFixed(U_.Rows, B.Columns); // zeros, so that it matches yy.Fill(0); yy.Update(B); // cols of u.transpose. ??? x = U_.ConjugateTranspose() * yy; } else { x = U_.ConjugateTranspose() * B; } int i, j; for (i = 0; i < x.Rows; i++) { // multiply with diagonal 1/W float weight = W_[i, i]; if (weight != 0) //vnl_numeric_traits<T>::zero) { weight = 1.0f / weight; } for (j = 0; j < x.Columns; j++) { x[i, j] *= weight; } } x = V_ * x; // premultiply with v. return(x); }
/// <summary> /// Simple overall prediction /// </summary> /// <param name="scene"></param> /// <param name="u"></param> /// <param name="delta_t"></param> public void predict_filter_slow(Scene_Single scene, Vector u, float delta_t) { Debug.WriteLine("*** SLOW PREDICTION ***"); // What we need to do for the prediction: // Calculate f and grad_f_x // Calculate Q // Form x(k+1|k) and P(k+1|k) int size = (int)scene.get_total_state_size(); // First form original total state and covariance Vector x = new Vector(size); MatrixFixed P = new MatrixFixed(size, size); scene.construct_total_state_and_covariance(ref x, ref P); // Make model calculations: store results in RES matrices Vector xv = scene.get_xv(); //Vector xv = new Vector(scene.get_xv()); scene.get_motion_model().func_fv_and_dfv_by_dxv(xv, u, delta_t); scene.get_motion_model().func_Q(scene.get_xv(), u, delta_t); // Find new state f Vector f = new Vector(size); // Feature elements of f are the same as x f.Update(x); f.Update(scene.get_motion_model().get_fvRES(), 0); // Find new P // Since most elements of df_by_dx are zero... MatrixFixed df_by_dx = new MatrixFixed(size, size); df_by_dx.Fill(0.0f); // Fill the rest of the elements of df_by_dx: 1 on diagonal for features for (int i = (int)scene.get_motion_model().STATE_SIZE; i < df_by_dx.Rows; i++) { df_by_dx[i, i] = 1.0f; } df_by_dx.Update(scene.get_motion_model().get_dfv_by_dxvRES(), 0, 0); // Calculate the process noise MatrixFixed Q = new MatrixFixed(size, size); Q.Fill(0.0f); Q.Update(scene.get_motion_model().get_QxRES(), 0, 0); P.Update(df_by_dx * P * df_by_dx.Transpose()); P += Q; scene.fill_state_and_covariance(f, P); }
public void update_filter_internal_measurement_slow(Scene_Single scene, uint i) { // Size of measurement vector uint size = ((Internal_Measurement)(scene.internal_measurement_vector[(int)i])).get_internal_measurement_model().MEASUREMENT_SIZE; uint size2 = scene.get_total_state_size(); // Size of state vector Vector x = new Vector(size2); MatrixFixed P = new MatrixFixed(size2, size2); scene.construct_total_state_and_covariance(ref x, ref P); // cout << "x:" << x; // cout << "P:" << P; // 1. Form nu and dh_by_dx Vector nu_tot = new Vector(size); MatrixFixed dh_by_dx_tot = new MatrixFixed(size, size2); MatrixFixed R_tot = new MatrixFixed(size, size); scene.construct_total_internal_measurement_stuff(nu_tot, dh_by_dx_tot, R_tot, i); // 2. Calculate S(k+1) MatrixFixed S = new MatrixFixed(size, size); //MatrixFixed Tempss2 = new MatrixFixed(size, size2); //MatrixFixed Temps2s = new MatrixFixed(size2, size); MatrixFixed dh_by_dx_totT = dh_by_dx_tot.Transpose(); S.Update(dh_by_dx_tot * P * dh_by_dx_totT); S += R_tot; // cout << "R_tot:" << R_tot; // cout << "S:" << S; // cout << "dh_by_dx_tot:" << dh_by_dx_tot; // cout << "dh_by_dx_totT:" << dh_by_dx_totT; // 3. Calculate W(k+1) Cholesky S_cholesky = new Cholesky(S); MatrixFixed W = P * dh_by_dx_totT * S_cholesky.Inverse(); // cout << "W:" << W; // 4. Calculate x(k+1|k+1) x += W * nu_tot; // 5. Calculate P(k+1|k+1) P -= W * S * W.Transpose(); scene.fill_state_and_covariance(x, P); // cout << "x after update:" << x; // cout << "P after update:" << P; }
public void construct_total_internal_measurement_stuff( Vector nu_tot, MatrixFixed dh_by_dx_tot, MatrixFixed R_tot, uint total_state_size) { //uint size = internal_measurement_model.MEASUREMENT_SIZE; //assert (nu_tot.Size() == size && //dh_by_dx_tot.Rows() == size && //dh_by_dx_tot.Cols() == total_state_size && //R_tot.Rows() == size && R_tot.Cols() == size); //assert(successful_internal_measurement_flag); nu_tot.Fill(0.0f); dh_by_dx_tot.Fill(0.0f); R_tot.Fill(0.0f); nu_tot.Update(nuv, 0); dh_by_dx_tot.Update(dhv_by_dxv, 0, 0); R_tot.Update(Rv, 0, 0); }
/// <summary> /// Fill noise covariance matrix Pnn: this is the covariance of /// the noise vector (V) /// (Omega) /// that gets added to the state. /// Form of this could change later, but for now assume that /// V and Omega are independent, and that each of their components is /// independent... /// </summary> /// <param name="xv"></param> /// <param name="v"></param> /// <param name="delta_t"></param> public override void func_Q(Vector xv, Vector v, float delta_t) { float linear_velocity_noise_variance = SD_A_component_filter * SD_A_component_filter * delta_t * delta_t; float angular_velocity_noise_variance = SD_alpha_component_filter * SD_alpha_component_filter * delta_t * delta_t; // Independence means that the matrix is diagonal MatrixFixed Pnn = new MatrixFixed(6, 6); Pnn.Fill(0.0f); Pnn.Put(0, 0, linear_velocity_noise_variance); Pnn.Put(1, 1, linear_velocity_noise_variance); Pnn.Put(2, 2, linear_velocity_noise_variance); Pnn.Put(3, 3, angular_velocity_noise_variance); Pnn.Put(4, 4, angular_velocity_noise_variance); Pnn.Put(5, 5, angular_velocity_noise_variance); // Form Jacobian dxnew_by_dn // Is like this: // I * delta_t 0 // 0 dqnew_by_dOmega // I 0 // 0 I // Start by zeroing MatrixFixed dxnew_by_dn = new MatrixFixed(13, 6); dxnew_by_dn.Fill(0.0f); // Fill in easy bits first MatrixFixed Temp33A = new MatrixFixed(3, 3); Temp33A.SetIdentity(); dxnew_by_dn.Update(Temp33A, 7, 0); dxnew_by_dn.Update(Temp33A, 10, 3); Temp33A *= delta_t; dxnew_by_dn.Update(Temp33A, 0, 0); // Tricky bit is dqnew_by_dOmega // Is actually the same calculation as in func_fv... // Since omega and Omega are additive...? Vector3D rold = new Vector3D(0, 0, 0); Vector3D vold = new Vector3D(0, 0, 0); Vector3D omegaold = new Vector3D(0, 0, 0); Quaternion qold = new Quaternion(); extract_r_q_v_omega(xv, rold, qold, vold, omegaold); // overkill but easy // Fill in dqnew_by_domega = d(q x qwt)_by_dqwt . dqwt_by_domega // Temp44A is d(q x qwt) by dqwt MatrixFixed Temp44A = MatrixFixed.dq3_by_dq1(qold); // Use function below for dqwt_by_domega MatrixFixed Temp43A = new MatrixFixed(4, 3); dqomegadt_by_domega(omegaold, delta_t, Temp43A); // Multiply them together MatrixFixed Temp43B = Temp44A * Temp43A; // And then plug into Jacobian dxnew_by_dn.Update(Temp43B, 3, 3); // Finally do Q = dxnew_by_dn . Pnn . dxnew_by_dnT QxRES.Update(dxnew_by_dn * Pnn * dxnew_by_dn.Transpose()); // cout << "QxRES" << QxRES; }
/// <summary> /// Form the covariance matrix Q of the process noise associated with x_v . /// </summary> /// <param name="xv"></param> /// <param name="v"></param> /// <param name="delta_t"></param> public override void func_Q(Vector xv, Vector v, float delta_t) { // Fill noise covariance matrix Pnn: this is the covariance of // the noise vector (V) // (Omega) // that gets added to the state. // Form of this could change later, but for now assume that // V and Omega are independent, and that each of their components is // independent... float linear_velocity_noise_variance = SD_A_component_filter * SD_A_component_filter * delta_t * delta_t; float angular_velocity_noise_variance = SD_alpha_component_filter * SD_alpha_component_filter * delta_t * delta_t; // Independence means that the matrix is diagonal MatrixFixed Pnn = new MatrixFixed(6, 6); Pnn.Fill(0.0f); Pnn.Put(0, 0, linear_velocity_noise_variance); Pnn.Put(1, 1, linear_velocity_noise_variance); Pnn.Put(2, 2, linear_velocity_noise_variance); Pnn.Put(3, 3, angular_velocity_noise_variance); Pnn.Put(4, 4, angular_velocity_noise_variance); Pnn.Put(5, 5, angular_velocity_noise_variance); // Form Jacobian dxnew_by_dn // Is like this: // I * delta_t 0 // 0 dqnew_by_dOmega // Start by zeroing MatrixFixed dxnew_by_dn = new MatrixFixed(7, 6); dxnew_by_dn.Fill(0.0f); // The translation part is just I \Delta t MatrixFixed Temp33A = new MatrixFixed(3, 3); Temp33A.SetIdentity(); Temp33A *= delta_t; dxnew_by_dn.Update(Temp33A, 0, 0); // qnew = q x \Omega \Deltat // dqnew_by_d\Omega = dqnew_by_d\Omega\Delta t . d\Omega\Delta t_by_d\Omega // Get the first part Vector qRXYZ = xv.Extract(4, 3); Quaternion qold = new Quaternion(); qold.SetRXYZ(qRXYZ); MatrixFixed Temp44A = MatrixFixed.dq3_by_dq1(qold); // Use function below for dqwt_by_dOmega Vector Omega = new Vector(3); Omega.Fill(SD_alpha_component_filter); MatrixFixed Temp43A = new MatrixFixed(4, 3); dqomegadt_by_domega(new Vector3D(Omega), delta_t, Temp43A); // Multiply them together MatrixFixed Temp43B = Temp44A * Temp43A; // And then plug into Jacobian dxnew_by_dn.Update(Temp43B, 3, 3); // Finally do Q = dxnew_by_dn . Pnn . dxnew_by_dnT QxRES.Update(dxnew_by_dn * Pnn * dxnew_by_dn.Transpose()); }