/// <summary> /// Checks two shapes for collisions. /// </summary> /// <param name="support1">The SupportMappable implementation of the first shape to test.</param> /// <param name="support2">The SupportMappable implementation of the seconds shape to test.</param> /// <param name="orientation1">The orientation of the first shape.</param> /// <param name="orientation2">The orientation of the second shape.</param> /// <param name="position1">The position of the first shape.</param> /// <param name="position2">The position of the second shape</param> /// <param name="point">The pointin world coordinates, where collision occur.</param> /// <param name="normal">The normal pointing from body2 to body1.</param> /// <param name="penetration">Estimated penetration depth of the collision.</param> /// <returns>Returns true if there is a collision, false otherwise.</returns> public static bool Detect(ISupportMappable support1, ISupportMappable support2, ref JMatrix orientation1, ref JMatrix orientation2, ref JVector position1, ref JVector position2, out JVector point, out JVector normal, out float penetration) { // Used variables JVector temp1, temp2; JVector v01, v02, v0; JVector v11, v12, v1; JVector v21, v22, v2; JVector v31, v32, v3; JVector v41, v42, v4; JVector mn; // Initialization of the output point = normal = JVector.Zero; penetration = 0.0f; //JVector right = JVector.Right; // Get the center of shape1 in world coordinates -> v01 support1.SupportCenter(out v01); JVector.Transform(ref v01, ref orientation1, out v01); JVector.Add(ref position1, ref v01, out v01); // Get the center of shape2 in world coordinates -> v02 support2.SupportCenter(out v02); JVector.Transform(ref v02, ref orientation2, out v02); JVector.Add(ref position2, ref v02, out v02); // v0 is the center of the minkowski difference JVector.Subtract(ref v02, ref v01, out v0); // Avoid case where centers overlap -- any direction is fine in this case if (v0.IsNearlyZero()) { v0 = new JVector(0.00001f, 0, 0); } // v1 = support in direction of origin mn = v0; JVector.Negate(ref v0, out normal); SupportMapTransformed(support1, ref orientation1, ref position1, ref mn, out v11); SupportMapTransformed(support2, ref orientation2, ref position2, ref normal, out v12); JVector.Subtract(ref v12, ref v11, out v1); if (JVector.Dot(ref v1, ref normal) <= 0.0f) { return(false); } // v2 = support perpendicular to v1,v0 JVector.Cross(ref v1, ref v0, out normal); if (normal.IsNearlyZero()) { JVector.Subtract(ref v1, ref v0, out normal); normal.Normalize(); point = v11; JVector.Add(ref point, ref v12, out point); JVector.Multiply(ref point, 0.5f, out point); JVector.Subtract(ref v12, ref v11, out temp1); penetration = JVector.Dot(ref temp1, ref normal); //point = v11; //point2 = v12; return(true); } JVector.Negate(ref normal, out mn); SupportMapTransformed(support1, ref orientation1, ref position1, ref mn, out v21); SupportMapTransformed(support2, ref orientation2, ref position2, ref normal, out v22); JVector.Subtract(ref v22, ref v21, out v2); if (JVector.Dot(ref v2, ref normal) <= 0.0f) { return(false); } // Determine whether origin is on + or - side of plane (v1,v0,v2) JVector.Subtract(ref v1, ref v0, out temp1); JVector.Subtract(ref v2, ref v0, out temp2); JVector.Cross(ref temp1, ref temp2, out normal); float dist = JVector.Dot(ref normal, ref v0); // If the origin is on the - side of the plane, reverse the direction of the plane if (dist > 0.0f) { JVector.Swap(ref v1, ref v2); JVector.Swap(ref v11, ref v21); JVector.Swap(ref v12, ref v22); JVector.Negate(ref normal, out normal); } int phase2 = 0; int phase1 = 0; bool hit = false; // Phase One: Identify a portal while (true) { if (phase1 > MaximumIterations) { return(false); } phase1++; // Obtain the support point in a direction perpendicular to the existing plane // Note: This point is guaranteed to lie off the plane JVector.Negate(ref normal, out mn); SupportMapTransformed(support1, ref orientation1, ref position1, ref mn, out v31); SupportMapTransformed(support2, ref orientation2, ref position2, ref normal, out v32); JVector.Subtract(ref v32, ref v31, out v3); if (JVector.Dot(ref v3, ref normal) <= 0.0f) { return(false); } // If origin is outside (v1,v0,v3), then eliminate v2 and loop JVector.Cross(ref v1, ref v3, out temp1); if (JVector.Dot(ref temp1, ref v0) < 0.0f) { v2 = v3; v21 = v31; v22 = v32; JVector.Subtract(ref v1, ref v0, out temp1); JVector.Subtract(ref v3, ref v0, out temp2); JVector.Cross(ref temp1, ref temp2, out normal); continue; } // If origin is outside (v3,v0,v2), then eliminate v1 and loop JVector.Cross(ref v3, ref v2, out temp1); if (JVector.Dot(ref temp1, ref v0) < 0.0f) { v1 = v3; v11 = v31; v12 = v32; JVector.Subtract(ref v3, ref v0, out temp1); JVector.Subtract(ref v2, ref v0, out temp2); JVector.Cross(ref temp1, ref temp2, out normal); continue; } // Phase Two: Refine the portal // We are now inside of a wedge... while (true) { phase2++; // Compute normal of the wedge face JVector.Subtract(ref v2, ref v1, out temp1); JVector.Subtract(ref v3, ref v1, out temp2); JVector.Cross(ref temp1, ref temp2, out normal); // Can this happen??? Can it be handled more cleanly? if (normal.IsNearlyZero()) { return(true); } normal.Normalize(); // Compute distance from origin to wedge face float d = JVector.Dot(ref normal, ref v1); // If the origin is inside the wedge, we have a hit if (d >= 0 && !hit) { // HIT!!! hit = true; } // Find the support point in the direction of the wedge face JVector.Negate(ref normal, out mn); SupportMapTransformed(support1, ref orientation1, ref position1, ref mn, out v41); SupportMapTransformed(support2, ref orientation2, ref position2, ref normal, out v42); JVector.Subtract(ref v42, ref v41, out v4); JVector.Subtract(ref v4, ref v3, out temp1); float delta = JVector.Dot(ref temp1, ref normal); penetration = JVector.Dot(ref v4, ref normal); // If the boundary is thin enough or the origin is outside the support plane for the newly discovered vertex, then we can terminate if (delta <= CollideEpsilon || penetration <= 0.0f || phase2 > MaximumIterations) { if (hit) { JVector.Cross(ref v1, ref v2, out temp1); float b0 = JVector.Dot(ref temp1, ref v3); JVector.Cross(ref v3, ref v2, out temp1); float b1 = JVector.Dot(ref temp1, ref v0); JVector.Cross(ref v0, ref v1, out temp1); float b2 = JVector.Dot(ref temp1, ref v3); JVector.Cross(ref v2, ref v1, out temp1); float b3 = JVector.Dot(ref temp1, ref v0); float sum = b0 + b1 + b2 + b3; if (sum <= 0) { b0 = 0; JVector.Cross(ref v2, ref v3, out temp1); b1 = JVector.Dot(ref temp1, ref normal); JVector.Cross(ref v3, ref v1, out temp1); b2 = JVector.Dot(ref temp1, ref normal); JVector.Cross(ref v1, ref v2, out temp1); b3 = JVector.Dot(ref temp1, ref normal); sum = b1 + b2 + b3; } float inv = 1.0f / sum; JVector.Multiply(ref v01, b0, out point); JVector.Multiply(ref v11, b1, out temp1); JVector.Add(ref point, ref temp1, out point); JVector.Multiply(ref v21, b2, out temp1); JVector.Add(ref point, ref temp1, out point); JVector.Multiply(ref v31, b3, out temp1); JVector.Add(ref point, ref temp1, out point); JVector.Multiply(ref v02, b0, out temp2); JVector.Add(ref temp2, ref point, out point); JVector.Multiply(ref v12, b1, out temp1); JVector.Add(ref point, ref temp1, out point); JVector.Multiply(ref v22, b2, out temp1); JVector.Add(ref point, ref temp1, out point); JVector.Multiply(ref v32, b3, out temp1); JVector.Add(ref point, ref temp1, out point); JVector.Multiply(ref point, inv * 0.5f, out point); } // Compute the barycentric coordinates of the origin return(hit); } ////// Compute the tetrahedron dividing face (v4,v0,v1) //JVector.Cross(ref v4, ref v1, out temp1); //float d1 = JVector.Dot(ref temp1, ref v0); ////// Compute the tetrahedron dividing face (v4,v0,v2) //JVector.Cross(ref v4, ref v2, out temp1); //float d2 = JVector.Dot(ref temp1, ref v0); // Compute the tetrahedron dividing face (v4,v0,v3) JVector.Cross(ref v4, ref v0, out temp1); float dot = JVector.Dot(ref temp1, ref v1); if (dot >= 0.0f) { dot = JVector.Dot(ref temp1, ref v2); if (dot >= 0.0f) { // Inside d1 & inside d2 ==> eliminate v1 v1 = v4; v11 = v41; v12 = v42; } else { // Inside d1 & outside d2 ==> eliminate v3 v3 = v4; v31 = v41; v32 = v42; } } else { dot = JVector.Dot(ref temp1, ref v3); if (dot >= 0.0f) { // Outside d1 & inside d3 ==> eliminate v2 v2 = v4; v21 = v41; v22 = v42; } else { // Outside d1 & outside d3 ==> eliminate v1 v1 = v4; v11 = v41; v12 = v42; } } } } }
/// <summary> /// Adds a body to the fluid. Only bodies which where added /// to the fluidvolume gets affected by buoyancy forces. /// </summary> /// <param name="body">The body which should be added.</param> /// <param name="subdivisions">The object is subdivided in smaller objects /// for which buoyancy force is calculated. The more subdivisons the better /// the results. Note that the total number of subdivisions is subdivisions³.</param> public void Add(RigidBody body, int subdivisions) { List <JVector> massPoints = new List <JVector>(); JVector testVector; JVector diff = body.Shape.BoundingBox.Max - body.Shape.BoundingBox.Min; if (diff.IsNearlyZero()) { throw new InvalidOperationException("BoundingBox volume of the shape is zero."); } Multishape ms = body.Shape as Multishape; int values = 0; if (ms != null) { JBBox largeBox = JBBox.LargeBox; values = ms.Prepare(ref largeBox); } for (int i = 0; i < subdivisions; i++) { for (int e = 0; e < subdivisions; e++) { for (int k = 0; k < subdivisions; k++) { testVector.X = body.Shape.BoundingBox.Min.X + (diff.X / (float)(subdivisions - 1)) * ((float)i); testVector.Y = body.Shape.BoundingBox.Min.Y + (diff.Y / (float)(subdivisions - 1)) * ((float)e); testVector.Z = body.Shape.BoundingBox.Min.Z + (diff.Z / (float)(subdivisions - 1)) * ((float)k); JMatrix ident = JMatrix.Identity; JVector zero = JVector.Zero; if (ms != null) { for (int j = 0; j < values; j++) { ms.SetCurrentShape(j); if (GJKCollide.Pointcast(body.Shape, ref ident, ref zero, ref testVector)) { massPoints.Add(testVector); } } } else { if (GJKCollide.Pointcast(body.Shape, ref ident, ref zero, ref testVector)) { massPoints.Add(testVector); } } } } } samples.Add(body.Shape, massPoints.ToArray()); bodies.Add(body); }