예제 #1
0
        private static Node HandleNegate(IntrusiveList <Node> nodes, Node node, Operation operation)
        {
            // There's no SSE FP negate instruction, so we need to transform that into
            // a XOR of the value to be negated with a mask with the highest bit set.
            // This also produces -0 for a negation of the value 0.
            Operand dest   = operation.Destination;
            Operand source = operation.GetSource(0);

            Debug.Assert(dest.Type == OperandType.FP32 ||
                         dest.Type == OperandType.FP64, $"Invalid destination type \"{dest.Type}\".");

            Node currentNode = node;

            Operand res = Local(dest.Type);

            node = nodes.AddAfter(node, new Operation(Instruction.VectorOne, res));

            if (dest.Type == OperandType.FP32)
            {
                node = nodes.AddAfter(node, new IntrinsicOperation(Intrinsic.X86Pslld, res, res, Const(31)));
            }
            else /* if (dest.Type == OperandType.FP64) */
            {
                node = nodes.AddAfter(node, new IntrinsicOperation(Intrinsic.X86Psllq, res, res, Const(63)));
            }

            node = nodes.AddAfter(node, new IntrinsicOperation(Intrinsic.X86Xorps, res, res, source));

            node = nodes.AddAfter(node, new Operation(Instruction.Copy, dest, res));

            Delete(nodes, currentNode, operation);

            return(node);
        }
예제 #2
0
        private static Node HandleConvertToFPUI(IntrusiveList <Node> nodes, Node node, Operation operation)
        {
            // Unsigned integer to FP conversions are not supported on X86.
            // We need to turn them into signed integer to FP conversions, and
            // adjust the final result.
            Operand dest   = operation.Destination;
            Operand source = operation.GetSource(0);

            Debug.Assert(source.Type.IsInteger(), $"Invalid source type \"{source.Type}\".");

            Node currentNode = node;

            if (source.Type == OperandType.I32)
            {
                // For 32-bits integers, we can just zero-extend to 64-bits,
                // and then use the 64-bits signed conversion instructions.
                Operand zex = Local(OperandType.I64);

                node = nodes.AddAfter(node, new Operation(Instruction.ZeroExtend32, zex, source));
                node = nodes.AddAfter(node, new Operation(Instruction.ConvertToFP, dest, zex));
            }
            else /* if (source.Type == OperandType.I64) */
            {
                // For 64-bits integers, we need to do the following:
                // - Ensure that the integer has the most significant bit clear.
                // -- This can be done by shifting the value right by 1, that is, dividing by 2.
                // -- The least significant bit is lost in this case though.
                // - We can then convert the shifted value with a signed integer instruction.
                // - The result still needs to be corrected after that.
                // -- First, we need to multiply the result by 2, as we divided it by 2 before.
                // --- This can be done efficiently by adding the result to itself.
                // -- Then, we need to add the least significant bit that was shifted out.
                // --- We can convert the least significant bit to float, and add it to the result.
                Operand lsb  = Local(OperandType.I64);
                Operand half = Local(OperandType.I64);

                Operand lsbF = Local(dest.Type);

                node = nodes.AddAfter(node, new Operation(Instruction.Copy, lsb, source));
                node = nodes.AddAfter(node, new Operation(Instruction.Copy, half, source));

                node = nodes.AddAfter(node, new Operation(Instruction.BitwiseAnd, lsb, lsb, Const(1L)));
                node = nodes.AddAfter(node, new Operation(Instruction.ShiftRightUI, half, half, Const(1)));

                node = nodes.AddAfter(node, new Operation(Instruction.ConvertToFP, lsbF, lsb));
                node = nodes.AddAfter(node, new Operation(Instruction.ConvertToFP, dest, half));

                node = nodes.AddAfter(node, new Operation(Instruction.Add, dest, dest, dest));
                node = nodes.AddAfter(node, new Operation(Instruction.Add, dest, dest, lsbF));
            }

            Delete(nodes, currentNode, operation);

            return(node);
        }
예제 #3
0
        private static Node HandleVectorInsert8(IntrusiveList <Node> nodes, Node node, Operation operation)
        {
            // Handle vector insertion, when SSE 4.1 is not supported.
            Operand dest = operation.Destination;
            Operand src1 = operation.GetSource(0); // Vector
            Operand src2 = operation.GetSource(1); // Value
            Operand src3 = operation.GetSource(2); // Index

            Debug.Assert(src3.Kind == OperandKind.Constant);

            byte index = src3.AsByte();

            Debug.Assert(index < 16);

            Node currentNode = node;

            Operand temp1 = Local(OperandType.I32);
            Operand temp2 = Local(OperandType.I32);

            node = nodes.AddAfter(node, new Operation(Instruction.Copy, temp2, src2));

            Operation vextOp = new Operation(Instruction.VectorExtract16, temp1, src1, Const(index >> 1));

            node = nodes.AddAfter(node, vextOp);

            if ((index & 1) != 0)
            {
                node = nodes.AddAfter(node, new Operation(Instruction.ZeroExtend8, temp1, temp1));
                node = nodes.AddAfter(node, new Operation(Instruction.ShiftLeft, temp2, temp2, Const(8)));
                node = nodes.AddAfter(node, new Operation(Instruction.BitwiseOr, temp1, temp1, temp2));
            }
            else
            {
                node = nodes.AddAfter(node, new Operation(Instruction.ZeroExtend8, temp2, temp2));
                node = nodes.AddAfter(node, new Operation(Instruction.BitwiseAnd, temp1, temp1, Const(0xff00)));
                node = nodes.AddAfter(node, new Operation(Instruction.BitwiseOr, temp1, temp1, temp2));
            }

            Operation vinsOp = new Operation(Instruction.VectorInsert16, dest, src1, temp1, Const(index >> 1));

            node = nodes.AddAfter(node, vinsOp);

            Delete(nodes, currentNode, operation);

            return(node);
        }
예제 #4
0
        private static Node HandleCallSystemVAbi(IntrusiveList <Node> nodes, Node node, Operation operation)
        {
            Operand dest = operation.Destination;

            List <Operand> sources = new List <Operand>
            {
                operation.GetSource(0)
            };

            int argsCount = operation.SourcesCount - 1;

            int intMax = CallingConvention.GetIntArgumentsOnRegsCount();
            int vecMax = CallingConvention.GetVecArgumentsOnRegsCount();

            int intCount = 0;
            int vecCount = 0;

            int stackOffset = 0;

            for (int index = 0; index < argsCount; index++)
            {
                Operand source = operation.GetSource(index + 1);

                bool passOnReg;

                if (source.Type.IsInteger())
                {
                    passOnReg = intCount < intMax;
                }
                else if (source.Type == OperandType.V128)
                {
                    passOnReg = intCount + 1 < intMax;
                }
                else
                {
                    passOnReg = vecCount < vecMax;
                }

                if (source.Type == OperandType.V128 && passOnReg)
                {
                    // V128 is a struct, we pass each half on a GPR if possible.
                    Operand argReg  = Gpr(CallingConvention.GetIntArgumentRegister(intCount++), OperandType.I64);
                    Operand argReg2 = Gpr(CallingConvention.GetIntArgumentRegister(intCount++), OperandType.I64);

                    nodes.AddBefore(node, new Operation(Instruction.VectorExtract, argReg, source, Const(0)));
                    nodes.AddBefore(node, new Operation(Instruction.VectorExtract, argReg2, source, Const(1)));

                    continue;
                }

                if (passOnReg)
                {
                    Operand argReg = source.Type.IsInteger()
                        ? Gpr(CallingConvention.GetIntArgumentRegister(intCount++), source.Type)
                        : Xmm(CallingConvention.GetVecArgumentRegister(vecCount++), source.Type);

                    Operation copyOp = new Operation(Instruction.Copy, argReg, source);

                    HandleConstantCopy(nodes, nodes.AddBefore(node, copyOp), copyOp);

                    sources.Add(argReg);
                }
                else
                {
                    Operand offset = new Operand(stackOffset);

                    Operation spillOp = new Operation(Instruction.SpillArg, null, offset, source);

                    HandleConstantCopy(nodes, nodes.AddBefore(node, spillOp), spillOp);

                    stackOffset += source.Type.GetSizeInBytes();
                }
            }

            if (dest != null)
            {
                if (dest.Type == OperandType.V128)
                {
                    Operand retLReg = Gpr(CallingConvention.GetIntReturnRegister(), OperandType.I64);
                    Operand retHReg = Gpr(CallingConvention.GetIntReturnRegisterHigh(), OperandType.I64);

                    node = nodes.AddAfter(node, new Operation(Instruction.VectorCreateScalar, dest, retLReg));
                    node = nodes.AddAfter(node, new Operation(Instruction.VectorInsert, dest, dest, retHReg, Const(1)));

                    operation.Destination = null;
                }
                else
                {
                    Operand retReg = dest.Type.IsInteger()
                        ? Gpr(CallingConvention.GetIntReturnRegister(), dest.Type)
                        : Xmm(CallingConvention.GetVecReturnRegister(), dest.Type);

                    Operation copyOp = new Operation(Instruction.Copy, dest, retReg);

                    node = nodes.AddAfter(node, copyOp);

                    operation.Destination = retReg;
                }
            }

            operation.SetSources(sources.ToArray());

            return(node);
        }
예제 #5
0
        private static Node HandleCallWindowsAbi(IntrusiveList <Node> nodes, StackAllocator stackAlloc, Node node, Operation operation)
        {
            Operand dest = operation.Destination;

            // Handle struct arguments.
            int retArgs = 0;

            int stackAllocOffset = 0;

            int AllocateOnStack(int size)
            {
                // We assume that the stack allocator is initially empty (TotalSize = 0).
                // Taking that into account, we can reuse the space allocated for other
                // calls by keeping track of our own allocated size (stackAllocOffset).
                // If the space allocated is not big enough, then we just expand it.
                int offset = stackAllocOffset;

                if (stackAllocOffset + size > stackAlloc.TotalSize)
                {
                    stackAlloc.Allocate((stackAllocOffset + size) - stackAlloc.TotalSize);
                }

                stackAllocOffset += size;

                return(offset);
            }

            Operand arg0Reg = null;

            if (dest != null && dest.Type == OperandType.V128)
            {
                int stackOffset = AllocateOnStack(dest.Type.GetSizeInBytes());

                arg0Reg = Gpr(CallingConvention.GetIntArgumentRegister(0), OperandType.I64);

                Operation allocOp = new Operation(Instruction.StackAlloc, arg0Reg, Const(stackOffset));

                nodes.AddBefore(node, allocOp);

                retArgs = 1;
            }

            int argsCount = operation.SourcesCount - 1;

            int maxArgs = CallingConvention.GetArgumentsOnRegsCount() - retArgs;

            if (argsCount > maxArgs)
            {
                argsCount = maxArgs;
            }

            Operand[] sources = new Operand[1 + retArgs + argsCount];

            sources[0] = operation.GetSource(0);

            if (arg0Reg != null)
            {
                sources[1] = arg0Reg;
            }

            for (int index = 1; index < operation.SourcesCount; index++)
            {
                Operand source = operation.GetSource(index);

                if (source.Type == OperandType.V128)
                {
                    Operand stackAddr = Local(OperandType.I64);

                    int stackOffset = AllocateOnStack(source.Type.GetSizeInBytes());

                    nodes.AddBefore(node, new Operation(Instruction.StackAlloc, stackAddr, Const(stackOffset)));

                    Operation storeOp = new Operation(Instruction.Store, null, stackAddr, source);

                    HandleConstantCopy(nodes, nodes.AddBefore(node, storeOp), storeOp);

                    operation.SetSource(index, stackAddr);
                }
            }

            // Handle arguments passed on registers.
            for (int index = 0; index < argsCount; index++)
            {
                Operand source = operation.GetSource(index + 1);

                Operand argReg;

                int argIndex = index + retArgs;

                if (source.Type.IsInteger())
                {
                    argReg = Gpr(CallingConvention.GetIntArgumentRegister(argIndex), source.Type);
                }
                else
                {
                    argReg = Xmm(CallingConvention.GetVecArgumentRegister(argIndex), source.Type);
                }

                Operation copyOp = new Operation(Instruction.Copy, argReg, source);

                HandleConstantCopy(nodes, nodes.AddBefore(node, copyOp), copyOp);

                sources[1 + retArgs + index] = argReg;
            }

            // The remaining arguments (those that are not passed on registers)
            // should be passed on the stack, we write them to the stack with "SpillArg".
            for (int index = argsCount; index < operation.SourcesCount - 1; index++)
            {
                Operand source = operation.GetSource(index + 1);

                Operand offset = new Operand((index + retArgs) * 8);

                Operation spillOp = new Operation(Instruction.SpillArg, null, offset, source);

                HandleConstantCopy(nodes, nodes.AddBefore(node, spillOp), spillOp);
            }

            if (dest != null)
            {
                if (dest.Type == OperandType.V128)
                {
                    Operand retValueAddr = Local(OperandType.I64);

                    nodes.AddBefore(node, new Operation(Instruction.Copy, retValueAddr, arg0Reg));

                    Operation loadOp = new Operation(Instruction.Load, dest, retValueAddr);

                    node = nodes.AddAfter(node, loadOp);

                    operation.Destination = null;
                }
                else
                {
                    Operand retReg = dest.Type.IsInteger()
                        ? Gpr(CallingConvention.GetIntReturnRegister(), dest.Type)
                        : Xmm(CallingConvention.GetVecReturnRegister(), dest.Type);

                    Operation copyOp = new Operation(Instruction.Copy, dest, retReg);

                    node = nodes.AddAfter(node, copyOp);

                    operation.Destination = retReg;
                }
            }

            operation.SetSources(sources);

            return(node);
        }
예제 #6
0
        private static Node HandleSameDestSrc1Copy(IntrusiveList <Node> nodes, Node node, Operation operation)
        {
            if (operation.Destination == null || operation.SourcesCount == 0)
            {
                return(node);
            }

            Instruction inst = operation.Instruction;

            Operand dest = operation.Destination;
            Operand src1 = operation.GetSource(0);

            // The multiply instruction (that maps to IMUL) is somewhat special, it has
            // a three operand form where the second source is a immediate value.
            bool threeOperandForm = inst == Instruction.Multiply && operation.GetSource(1).Kind == OperandKind.Constant;

            if (IsSameOperandDestSrc1(operation) && src1.Kind == OperandKind.LocalVariable && !threeOperandForm)
            {
                bool useNewLocal = false;

                for (int srcIndex = 1; srcIndex < operation.SourcesCount; srcIndex++)
                {
                    if (operation.GetSource(srcIndex) == dest)
                    {
                        useNewLocal = true;

                        break;
                    }
                }

                if (useNewLocal)
                {
                    // Dest is being used as some source already, we need to use a new
                    // local to store the temporary value, otherwise the value on dest
                    // local would be overwritten.
                    Operand temp = Local(dest.Type);

                    nodes.AddBefore(node, new Operation(Instruction.Copy, temp, src1));

                    operation.SetSource(0, temp);

                    node = nodes.AddAfter(node, new Operation(Instruction.Copy, dest, temp));

                    operation.Destination = temp;
                }
                else
                {
                    nodes.AddBefore(node, new Operation(Instruction.Copy, dest, src1));

                    operation.SetSource(0, dest);
                }
            }
            else if (inst == Instruction.ConditionalSelect)
            {
                Operand src2 = operation.GetSource(1);
                Operand src3 = operation.GetSource(2);

                if (src1 == dest || src2 == dest)
                {
                    Operand temp = Local(dest.Type);

                    nodes.AddBefore(node, new Operation(Instruction.Copy, temp, src3));

                    operation.SetSource(2, temp);

                    node = nodes.AddAfter(node, new Operation(Instruction.Copy, dest, temp));

                    operation.Destination = temp;
                }
                else
                {
                    nodes.AddBefore(node, new Operation(Instruction.Copy, dest, src3));

                    operation.SetSource(2, dest);
                }
            }

            return(node);
        }
예제 #7
0
        private static Node HandleFixedRegisterCopy(IntrusiveList <Node> nodes, Node node, Operation operation)
        {
            Operand dest = operation.Destination;

            switch (operation.Instruction)
            {
            case Instruction.CompareAndSwap128:
            {
                // Handle the many restrictions of the compare and exchange (16 bytes) instruction:
                // - The expected value should be in RDX:RAX.
                // - The new value to be written should be in RCX:RBX.
                // - The value at the memory location is loaded to RDX:RAX.
                void SplitOperand(Operand source, Operand lr, Operand hr)
                {
                    nodes.AddBefore(node, new Operation(Instruction.VectorExtract, lr, source, Const(0)));
                    nodes.AddBefore(node, new Operation(Instruction.VectorExtract, hr, source, Const(1)));
                }

                Operand rax = Gpr(X86Register.Rax, OperandType.I64);
                Operand rbx = Gpr(X86Register.Rbx, OperandType.I64);
                Operand rcx = Gpr(X86Register.Rcx, OperandType.I64);
                Operand rdx = Gpr(X86Register.Rdx, OperandType.I64);

                SplitOperand(operation.GetSource(1), rax, rdx);
                SplitOperand(operation.GetSource(2), rbx, rcx);

                node = nodes.AddAfter(node, new Operation(Instruction.VectorCreateScalar, dest, rax));
                node = nodes.AddAfter(node, new Operation(Instruction.VectorInsert, dest, dest, rdx, Const(1)));

                operation.SetDestinations(new Operand[] { rdx, rax });

                operation.SetSources(new Operand[] { operation.GetSource(0), rdx, rax, rcx, rbx });

                break;
            }

            case Instruction.CpuId:
            {
                // Handle the many restrictions of the CPU Id instruction:
                // - EAX controls the information returned by this instruction.
                // - When EAX is 1, feature information is returned.
                // - The information is written to registers EAX, EBX, ECX and EDX.
                Debug.Assert(dest.Type == OperandType.I64);

                Operand eax = Gpr(X86Register.Rax, OperandType.I32);
                Operand ebx = Gpr(X86Register.Rbx, OperandType.I32);
                Operand ecx = Gpr(X86Register.Rcx, OperandType.I32);
                Operand edx = Gpr(X86Register.Rdx, OperandType.I32);

                // Value 0x01 = Version, family and feature information.
                nodes.AddBefore(node, new Operation(Instruction.Copy, eax, Const(1)));

                // Copy results to the destination register.
                // The values are split into 2 32-bits registers, we merge them
                // into a single 64-bits register.
                Operand rcx = Gpr(X86Register.Rcx, OperandType.I64);

                node = nodes.AddAfter(node, new Operation(Instruction.ZeroExtend32, dest, edx));
                node = nodes.AddAfter(node, new Operation(Instruction.ShiftLeft, dest, dest, Const(32)));
                node = nodes.AddAfter(node, new Operation(Instruction.BitwiseOr, dest, dest, rcx));

                operation.SetDestinations(new Operand[] { eax, ebx, ecx, edx });

                operation.SetSources(new Operand[] { eax });

                break;
            }

            case Instruction.Divide:
            case Instruction.DivideUI:
            {
                // Handle the many restrictions of the division instructions:
                // - The dividend is always in RDX:RAX.
                // - The result is always in RAX.
                // - Additionally it also writes the remainder in RDX.
                if (dest.Type.IsInteger())
                {
                    Operand src1 = operation.GetSource(0);

                    Operand rax = Gpr(X86Register.Rax, src1.Type);
                    Operand rdx = Gpr(X86Register.Rdx, src1.Type);

                    nodes.AddBefore(node, new Operation(Instruction.Copy, rax, src1));
                    nodes.AddBefore(node, new Operation(Instruction.Clobber, rdx));

                    node = nodes.AddAfter(node, new Operation(Instruction.Copy, dest, rax));

                    operation.SetDestinations(new Operand[] { rdx, rax });

                    operation.SetSources(new Operand[] { rdx, rax, operation.GetSource(1) });

                    operation.Destination = rax;
                }

                break;
            }

            case Instruction.Extended:
            {
                IntrinsicOperation intrinOp = (IntrinsicOperation)operation;

                // BLENDVPD, BLENDVPS, PBLENDVB last operand is always implied to be XMM0 when VEX is not supported.
                if ((intrinOp.Intrinsic == Intrinsic.X86Blendvpd ||
                     intrinOp.Intrinsic == Intrinsic.X86Blendvps ||
                     intrinOp.Intrinsic == Intrinsic.X86Pblendvb) &&
                    !HardwareCapabilities.SupportsVexEncoding)
                {
                    Operand xmm0 = Xmm(X86Register.Xmm0, OperandType.V128);

                    nodes.AddBefore(node, new Operation(Instruction.Copy, xmm0, operation.GetSource(2)));

                    operation.SetSource(2, xmm0);
                }

                break;
            }

            case Instruction.Multiply64HighSI:
            case Instruction.Multiply64HighUI:
            {
                // Handle the many restrictions of the i64 * i64 = i128 multiply instructions:
                // - The multiplicand is always in RAX.
                // - The lower 64-bits of the result is always in RAX.
                // - The higher 64-bits of the result is always in RDX.
                Operand src1 = operation.GetSource(0);

                Operand rax = Gpr(X86Register.Rax, src1.Type);
                Operand rdx = Gpr(X86Register.Rdx, src1.Type);

                nodes.AddBefore(node, new Operation(Instruction.Copy, rax, src1));

                operation.SetSource(0, rax);

                node = nodes.AddAfter(node, new Operation(Instruction.Copy, dest, rdx));

                operation.SetDestinations(new Operand[] { rdx, rax });

                break;
            }

            case Instruction.RotateRight:
            case Instruction.ShiftLeft:
            case Instruction.ShiftRightSI:
            case Instruction.ShiftRightUI:
            {
                // The shift register is always implied to be CL (low 8-bits of RCX or ECX).
                if (operation.GetSource(1).Kind == OperandKind.LocalVariable)
                {
                    Operand rcx = Gpr(X86Register.Rcx, OperandType.I32);

                    nodes.AddBefore(node, new Operation(Instruction.Copy, rcx, operation.GetSource(1)));

                    operation.SetSource(1, rcx);
                }

                break;
            }
            }

            return(node);
        }