/* Find the best 'out_' histogram for each of the 'in' histograms. * When called, clusters[0..num_clusters) contains the unique values from * symbols[0..in_size), but this property is not preserved in this function. * Note: we assume that out_[]->bit_cost_ is already up-to-date. */ public static void BrotliHistogramRemap(HistogramDistance *in_, size_t in_size, uint *clusters, size_t num_clusters, HistogramDistance *out_, uint *symbols) { size_t i; for (i = 0; i < in_size; ++i) { uint best_out = i == 0 ? symbols[0] : symbols[i - 1]; double best_bits = BrotliHistogramBitCostDistance(&in_[i], &out_[best_out]); size_t j; for (j = 0; j < num_clusters; ++j) { double cur_bits = BrotliHistogramBitCostDistance(&in_[i], &out_[clusters[j]]); if (cur_bits < best_bits) { best_bits = cur_bits; best_out = clusters[j]; } } symbols[i] = best_out; } /* Recompute each out_ based on raw and symbols. */ for (i = 0; i < num_clusters; ++i) { HistogramDistance.HistogramClear(&out_[clusters[i]]); } for (i = 0; i < in_size; ++i) { HistogramDistance.HistogramAddHistogram(&out_[symbols[i]], &in_[i]); } }
/* What is the bit cost of moving histogram from cur_symbol to candidate. */ public static double BrotliHistogramBitCostDistance( HistogramDistance *histogram, HistogramDistance *candidate) { if (histogram->total_count_ == 0) { return(0.0); } else { HistogramDistance tmp = *histogram; HistogramDistance.HistogramAddHistogram(&tmp, candidate); return(BitCostDistance.BrotliPopulationCost(&tmp) - candidate->bit_cost_); } }
static void BrotliCompareAndPushToQueue( HistogramDistance *out_, uint *cluster_size, uint idx1, uint idx2, size_t max_num_pairs, HistogramPair *pairs, size_t *num_pairs) { bool is_good_pair = false; HistogramPair p = new HistogramPair(); if (idx1 == idx2) { return; } if (idx2 < idx1) { uint t = idx2; idx2 = idx1; idx1 = t; } p.idx1 = idx1; p.idx2 = idx2; p.cost_diff = 0.5 * ClusterCostDiff(cluster_size[idx1], cluster_size[idx2]); p.cost_diff -= out_[idx1].bit_cost_; p.cost_diff -= out_[idx2].bit_cost_; if (out_[idx1].total_count_ == 0) { p.cost_combo = out_[idx2].bit_cost_; is_good_pair = true; } else if (out_[idx2].total_count_ == 0) { p.cost_combo = out_[idx1].bit_cost_; is_good_pair = true; } else { double threshold = *num_pairs == 0 ? 1e99 : Math.Max(0.0, pairs[0].cost_diff); HistogramDistance combo = out_[idx1]; double cost_combo; HistogramDistance.HistogramAddHistogram(&combo, &out_[idx2]); cost_combo = BitCostDistance.BrotliPopulationCost(&combo); if (cost_combo < threshold - p.cost_diff) { p.cost_combo = cost_combo; is_good_pair = true; } } if (is_good_pair) { p.cost_diff += p.cost_combo; if (*num_pairs > 0 && HistogramPairIsLess(&pairs[0], &p)) { /* Replace the top of the queue if needed. */ if (*num_pairs < max_num_pairs) { pairs[*num_pairs] = pairs[0]; ++(*num_pairs); } pairs[0] = p; } else if (*num_pairs < max_num_pairs) { pairs[*num_pairs] = p; ++(*num_pairs); } } }
public static size_t BrotliHistogramCombine(HistogramDistance *out_, uint *cluster_size, uint *symbols, uint *clusters, HistogramPair *pairs, size_t num_clusters, size_t symbols_size, size_t max_clusters, size_t max_num_pairs) { double cost_diff_threshold = 0.0; size_t min_cluster_size = 1; size_t num_pairs = 0; { /* We maintain a vector of histogram pairs, with the property that the pair * with the maximum bit cost reduction is the first. */ size_t idx1; for (idx1 = 0; idx1 < num_clusters; ++idx1) { size_t idx2; for (idx2 = idx1 + 1; idx2 < num_clusters; ++idx2) { BrotliCompareAndPushToQueue(out_, cluster_size, clusters[idx1], clusters[idx2], max_num_pairs, &pairs[0], &num_pairs); } } } while (num_clusters > min_cluster_size) { uint best_idx1; uint best_idx2; size_t i; if (pairs[0].cost_diff >= cost_diff_threshold) { cost_diff_threshold = 1e99; min_cluster_size = max_clusters; continue; } /* Take the best pair from the top of heap. */ best_idx1 = pairs[0].idx1; best_idx2 = pairs[0].idx2; HistogramDistance.HistogramAddHistogram(&out_[best_idx1], &out_[best_idx2]); out_[best_idx1].bit_cost_ = pairs[0].cost_combo; cluster_size[best_idx1] += cluster_size[best_idx2]; for (i = 0; i < symbols_size; ++i) { if (symbols[i] == best_idx2) { symbols[i] = best_idx1; } } for (i = 0; i < num_clusters; ++i) { if (clusters[i] == best_idx2) { memmove(&clusters[i], &clusters[i + 1], (num_clusters - i - 1) * sizeof(uint)); break; } } --num_clusters; { /* Remove pairs intersecting the just combined best pair. */ size_t copy_to_idx = 0; for (i = 0; i < num_pairs; ++i) { HistogramPair *p = &pairs[i]; if (p->idx1 == best_idx1 || p->idx2 == best_idx1 || p->idx1 == best_idx2 || p->idx2 == best_idx2) { /* Remove invalid pair from the queue. */ continue; } if (HistogramPairIsLess(&pairs[0], p)) { /* Replace the top of the queue if needed. */ HistogramPair front = pairs[0]; pairs[0] = *p; pairs[copy_to_idx] = front; } else { pairs[copy_to_idx] = *p; } ++copy_to_idx; } num_pairs = copy_to_idx; } /* Push new pairs formed with the combined histogram to the heap. */ for (i = 0; i < num_clusters; ++i) { BrotliCompareAndPushToQueue(out_, cluster_size, best_idx1, clusters[i], max_num_pairs, &pairs[0], &num_pairs); } } return(num_clusters); }
/* Does either of three things: * (1) emits the current block with a new block type; * (2) emits the current block with the type of the second last block; * (3) merges the current block with the last block. */ public static unsafe void BlockSplitterFinishBlock( BlockSplitterDistance *self, bool is_final) { BlockSplit * split = self->split_; double * last_entropy = self->last_entropy_; HistogramDistance *histograms = self->histograms_; self->block_size_ = Math.Max(self->block_size_, self->min_block_size_); if (self->num_blocks_ == 0) { /* Create first block. */ split->lengths[0] = (uint)self->block_size_; split->types[0] = 0; last_entropy[0] = BitsEntropy(histograms[0].data_, self->alphabet_size_); last_entropy[1] = last_entropy[0]; ++self->num_blocks_; ++split->num_types; ++self->curr_histogram_ix_; if (self->curr_histogram_ix_ < *self->histograms_size_) { HistogramDistance.HistogramClear(&histograms[self->curr_histogram_ix_]); } self->block_size_ = 0; } else if (self->block_size_ > 0) { double entropy = BitsEntropy(histograms[self->curr_histogram_ix_].data_, self->alphabet_size_); HistogramDistance *combined_histo = stackalloc HistogramDistance[2]; double * combined_entropy = stackalloc double[2]; double * diff = stackalloc double[2]; size_t j; for (j = 0; j < 2; ++j) { size_t last_histogram_ix = j == 0 ? self->last_histogram_ix_0 : self->last_histogram_ix_1; combined_histo[j] = histograms[self->curr_histogram_ix_]; HistogramDistance.HistogramAddHistogram(&combined_histo[j], &histograms[last_histogram_ix]); combined_entropy[j] = BitsEntropy( &combined_histo[j].data_[0], self->alphabet_size_); diff[j] = combined_entropy[j] - entropy - last_entropy[j]; } if (split->num_types < BROTLI_MAX_NUMBER_OF_BLOCK_TYPES && diff[0] > self->split_threshold_ && diff[1] > self->split_threshold_) { /* Create new block. */ split->lengths[self->num_blocks_] = (uint)self->block_size_; split->types[self->num_blocks_] = (byte)split->num_types; self->last_histogram_ix_1 = self->last_histogram_ix_0; self->last_histogram_ix_0 = (byte)split->num_types; last_entropy[1] = last_entropy[0]; last_entropy[0] = entropy; ++self->num_blocks_; ++split->num_types; ++self->curr_histogram_ix_; if (self->curr_histogram_ix_ < *self->histograms_size_) { HistogramDistance.HistogramClear(&histograms[self->curr_histogram_ix_]); } self->block_size_ = 0; self->merge_last_count_ = 0; self->target_block_size_ = self->min_block_size_; } else if (diff[1] < diff[0] - 20.0) { /* Combine this block with second last block. */ split->lengths[self->num_blocks_] = (uint)self->block_size_; split->types[self->num_blocks_] = split->types[self->num_blocks_ - 2]; size_t tmp = self->last_histogram_ix_0; self->last_histogram_ix_0 = self->last_histogram_ix_1; self->last_histogram_ix_1 = tmp; histograms[self->last_histogram_ix_0] = combined_histo[1]; last_entropy[1] = last_entropy[0]; last_entropy[0] = combined_entropy[1]; ++self->num_blocks_; self->block_size_ = 0; HistogramDistance.HistogramClear(&histograms[self->curr_histogram_ix_]); self->merge_last_count_ = 0; self->target_block_size_ = self->min_block_size_; } else { /* Combine this block with last block. */ split->lengths[self->num_blocks_ - 1] += (uint)self->block_size_; histograms[self->last_histogram_ix_0] = combined_histo[0]; last_entropy[0] = combined_entropy[0]; if (split->num_types == 1) { last_entropy[1] = last_entropy[0]; } self->block_size_ = 0; HistogramDistance.HistogramClear(&histograms[self->curr_histogram_ix_]); if (++self->merge_last_count_ > 1) { self->target_block_size_ += self->min_block_size_; } } } if (is_final) { *self->histograms_size_ = split->num_types; split->num_blocks = self->num_blocks_; } }