예제 #1
0
        // Now we define methods that give our pipeline several different
        // schedules.
        public void ScheduleForCpu()
        {
            // Compute the look-up-table ahead of time.
            Lut.ComputeRoot();

            // Compute color channels innermost. Promise that there will
            // be three of them and unroll across them.
            Curved.Reorder(C, X, Y)
            .Bound(C, 0, 3)
            .Unroll(C);

            // Look-up-tables don't vectorize well, so just parallelize
            // curved in slices of 16 scanlines.
            var yo = new HSVar("yo");
            var yi = new HSVar("yi");

            Curved.Split(Y, yo, yi, 16)
            .Parallel(yo);

            // Compute sharpen as needed per scanline of curved.
            Sharpen.ComputeAt(Curved, yi);

            // Vectorize the sharpen. It's 16-bit so we'll vectorize it 8-wide.
            Sharpen.Vectorize(X, 8);

            // Compute the padded input as needed per scanline of curved,
            // reusing previous values computed within the same strip of
            // 16 scanlines.
            Padded.StoreAt(Curved, yo)
            .ComputeAt(Curved, yi);

            // Also vectorize the padding. It's 8-bit, so we'll vectorize
            // 16-wide.
            Padded.Vectorize(X, 16);

            // JIT-compile the pipeline for the CPU.
            Curved.CompileJit();
        }
예제 #2
0
        public static int Main(string[] args)
        {
            // First we'll declare some Vars to use below.
            var x = new HSVar("x");
            var y = new HSVar("y");

            // Let's examine various scheduling options for a simple two stage
            // pipeline. We'll start with the default schedule:
            {
                var producer = new HSFunc("producer_default");
                var consumer = new HSFunc("consumer_default");

                // The first stage will be some simple pointwise math similar
                // to our familiar gradient function. The value at position x,
                // y is the sin of product of x and y.
                producer[x, y] = HSMath.Sin(x * y);

                // Now we'll add a second stage which averages together multiple
                // points in the first stage.
                consumer[x, y] = (producer[x, y] +
                                  producer[x, y + 1] +
                                  producer[x + 1, y] +
                                  producer[x + 1, y + 1]) / 4;

                // We'll turn on tracing for both functions.
                consumer.TraceStores();
                producer.TraceStores();

                // And evaluate it over a 4x4 box.
                Console.WriteLine("\nEvaluating producer-consumer pipeline with default schedule");
                consumer.Realize <float>(4, 4);

                // There were no messages about computing values of the
                // producer. This is because the default schedule fully
                // inlines 'producer' into 'consumer'. It is as if we had
                // written the following code instead:

                // consumer(x, y) = (sin(x * y) +
                //                   sin(x * (y + 1)) +
                //                   sin((x + 1) * y) +
                //                   sin((x + 1) * (y + 1))/4);

                // All calls to 'producer' have been replaced with the body of
                // 'producer', with the arguments substituted in for the
                // variables.

                // The equivalent C code is:
                var result = new float[4, 4];
                for (int yy = 0; yy < 4; yy++)
                {
                    for (int xx = 0; xx < 4; xx++)
                    {
                        result[yy, xx] = (float)((Math.Sin(xx * yy) +
                                                  Math.Sin(xx * (yy + 1)) +
                                                  Math.Sin((xx + 1) * yy) +
                                                  Math.Sin((xx + 1) * (yy + 1))) / 4);
                    }
                }
                Console.WriteLine();

                // If we look at the loop nest, the producer doesn't appear
                // at all. It has been inlined into the consumer.
                Console.WriteLine("Pseudo-code for the schedule:");
                consumer.PrintLoopNest();
                Console.WriteLine();
            }

            // Next we'll examine the next simplest option - computing all
            // values required in the producer before computing any of the
            // consumer. We call this schedule "root".
            {
                // Start with the same function definitions:
                var producer = new HSFunc("producer_root");
                var consumer = new HSFunc("consumer_root");
                producer[x, y] = HSMath.Sin(x * y);
                consumer[x, y] = (producer[x, y] +
                                  producer[x, y + 1] +
                                  producer[x + 1, y] +
                                  producer[x + 1, y + 1]) / 4;

                // Tell Halide to evaluate all of producer before any of consumer.
                producer.ComputeRoot();

                // Turn on tracing.
                consumer.TraceStores();
                producer.TraceStores();

                // Compile and run.
                Console.WriteLine("\nEvaluating producer.compute_root()");
                consumer.Realize <float>(4, 4);

                // Reading the output we can see that:
                // A) There were stores to producer.
                // B) They all happened before any stores to consumer.

                // See figures/lesson_08_compute_root.gif for a visualization.
                // The producer is on the left and the consumer is on the
                // right. Stores are marked in orange and loads are marked in
                // blue.

                // Equivalent C:

                var result = new float[4, 4];

                // Allocate some temporary storage for the producer.
                var producer_storage = new float[5, 5];

                // Compute the producer.
                for (int yy = 0; yy < 5; yy++)
                {
                    for (int xx = 0; xx < 5; xx++)
                    {
                        producer_storage[yy, xx] = (float)Math.Sin(xx * yy);
                    }
                }

                // Compute the consumer. Skip the prints this time.
                for (int yy = 0; yy < 4; yy++)
                {
                    for (int xx = 0; xx < 4; xx++)
                    {
                        result[yy, xx] = (producer_storage[yy, xx] +
                                          producer_storage[yy + 1, xx] +
                                          producer_storage[yy, xx + 1] +
                                          producer_storage[yy + 1, xx + 1]) / 4;
                    }
                }

                // Note that consumer was evaluated over a 4x4 box, so Halide
                // automatically inferred that producer was needed over a 5x5
                // box. This is the same 'bounds inference' logic we saw in
                // the previous lesson, where it was used to detect and avoid
                // out-of-bounds reads from an input image.

                // If we print the loop nest, we'll see something very
                // similar to the C above.
                Console.WriteLine("Pseudo-code for the schedule:");
                consumer.PrintLoopNest();
                Console.WriteLine();
            }

            // Let's compare the two approaches above from a performance
            // perspective.

            // Full inlining (the default schedule):
            // - Temporary memory allocated: 0
            // - Loads: 0
            // - Stores: 16
            // - Calls to sin: 64

            // producer.compute_root():
            // - Temporary memory allocated: 25 floats
            // - Loads: 64
            // - Stores: 41
            // - Calls to sin: 25

            // There's a trade-off here. Full inlining used minimal temporary
            // memory and memory bandwidth, but did a whole bunch of redundant
            // expensive math (calling sin). It evaluated most points in
            // 'producer' four times. The second schedule,
            // producer.compute_root(), did the mimimum number of calls to
            // sin, but used more temporary memory and more memory bandwidth.

            // In any given situation the correct choice can be difficult to
            // make. If you're memory-bandwidth limited, or don't have much
            // memory (e.g. because you're running on an old cell-phone), then
            // it can make sense to do redundant math. On the other hand, sin
            // is expensive, so if you're compute-limited then fewer calls to
            // sin will make your program faster. Adding vectorization or
            // multi-core parallelism tilts the scales in favor of doing
            // redundant work, because firing up multiple cpu cores increases
            // the amount of math you can do per second, but doesn't increase
            // your system memory bandwidth or capacity.

            // We can make choices in between full inlining and
            // compute_root. Next we'll alternate between computing the
            // producer and consumer on a per-scanline basis:
            {
                // Start with the same function definitions:
                var producer = new HSFunc("producer_y");
                var consumer = new HSFunc("consumer_y");
                producer[x, y] = HSMath.Sin(x * y);
                consumer[x, y] = (producer[x, y] +
                                  producer[x, y + 1] +
                                  producer[x + 1, y] +
                                  producer[x + 1, y + 1]) / 4;

                // Tell Halide to evaluate producer as needed per y coordinate
                // of the consumer:
                producer.ComputeAt(consumer, y);

                // This places the code that computes the producer just
                // *inside* the consumer's for loop over y, as in the
                // equivalent C below.

                // Turn on tracing.
                producer.TraceStores();
                consumer.TraceStores();

                // Compile and run.
                Console.WriteLine("\nEvaluating producer.ComputeAt(consumer, y)");
                consumer.Realize <float>(4, 4);

                // See figures/lesson_08_compute_y.gif for a visualization.

                // Reading the log or looking at the figure you should see
                // that producer and consumer alternate on a per-scanline
                // basis. Let's look at the equivalent C:

                var result = new float[4, 4];

                // There's an outer loop over scanlines of consumer:
                for (int yy = 0; yy < 4; yy++)
                {
                    // Allocate space and compute enough of the producer to
                    // satisfy this single scanline of the consumer. This
                    // means a 5x2 box of the producer.
                    var producer_storage = new float[2, 5];
                    for (int py = yy; py < yy + 2; py++)
                    {
                        for (int px = 0; px < 5; px++)
                        {
                            producer_storage[py - yy, px] = (float)Math.Sin(px * py);
                        }
                    }

                    // Compute a scanline of the consumer.
                    for (int xx = 0; xx < 4; xx++)
                    {
                        result[yy, xx] = (producer_storage[0, xx] +
                                          producer_storage[1, xx] +
                                          producer_storage[0, xx + 1] +
                                          producer_storage[1, xx + 1]) / 4;
                    }
                }

                // Again, if we print the loop nest, we'll see something very
                // similar to the C above.
                Console.WriteLine("Pseudo-code for the schedule:");
                consumer.PrintLoopNest();
                Console.WriteLine();

                // The performance characteristics of this strategy are in
                // between inlining and compute root. We still allocate some
                // temporary memory, but less that compute_root, and with
                // better locality (we load from it soon after writing to it,
                // so for larger images, values should still be in cache). We
                // still do some redundant work, but less than full inlining:

                // producer.ComputeAt(consumer, y):
                // - Temporary memory allocated: 10 floats
                // - Loads: 64
                // - Stores: 56
                // - Calls to sin: 40
            }

            // We could also say producer.ComputeAt(consumer, x), but this
            // would be very similar to full inlining (the default
            // schedule). Instead let's distinguish between the loop level at
            // which we allocate storage for producer, and the loop level at
            // which we actually compute it. This unlocks a few optimizations.
            {
                var producer = new HSFunc("producer_root_y");
                var consumer = new HSFunc("consumer_root_y");
                producer[x, y] = HSMath.Sin(x * y);
                consumer[x, y] = (producer[x, y] +
                                  producer[x, y + 1] +
                                  producer[x + 1, y] +
                                  producer[x + 1, y + 1]) / 4;


                // Tell Halide to make a buffer to store all of producer at
                // the outermost level:
                producer.StoreRoot();
                // ... but compute it as needed per y coordinate of the
                // consumer.
                producer.ComputeAt(consumer, y);

                producer.TraceStores();
                consumer.TraceStores();

                Console.WriteLine("\nEvaluating producer.store_root().ComputeAt(consumer, y)");
                consumer.Realize <float>(4, 4);

                // See figures/lesson_08_store_root_compute_y.gif for a
                // visualization.

                // Reading the log or looking at the figure you should see
                // that producer and consumer again alternate on a
                // per-scanline basis. It computes a 5x2 box of the producer
                // to satisfy the first scanline of the consumer, but after
                // that it only computes a 5x1 box of the output for each new
                // scanline of the consumer!
                //
                // Halide has detected that for all scanlines except for the
                // first, it can reuse the values already sitting in the
                // buffer we've allocated for producer. Let's look at the
                // equivalent C:

                var result = new float[4, 4];

                {
                    // producer.store_root() implies that storage goes here:
                    var producer_storage = new float[5, 5];

                    // There's an outer loop over scanlines of consumer:
                    for (int yy = 0; yy < 4; yy++)
                    {
                        // Compute enough of the producer to satisfy this scanline
                        // of the consumer.
                        for (int py = yy; py < yy + 2; py++)
                        {
                            // Skip over rows of producer that we've already
                            // computed in a previous iteration.
                            if (yy > 0 && py == yy)
                            {
                                continue;
                            }

                            for (int px = 0; px < 5; px++)
                            {
                                producer_storage[py, px] = (float)Math.Sin(px * py);
                            }
                        }

                        // Compute a scanline of the consumer.
                        for (int xx = 0; xx < 4; xx++)
                        {
                            result[yy, xx] = (producer_storage[yy, xx] +
                                              producer_storage[yy + 1, xx] +
                                              producer_storage[yy, xx + 1] +
                                              producer_storage[yy + 1, xx + 1]) / 4;
                        }
                    }
                }

                Console.WriteLine("Pseudo-code for the schedule:");
                consumer.PrintLoopNest();
                Console.WriteLine();

                // The performance characteristics of this strategy are pretty
                // good! The numbers are similar compute_root, except locality
                // is better. We're doing the minimum number of sin calls,
                // and we load values soon after they are stored, so we're
                // probably making good use of the cache:

                // producer.store_root().ComputeAt(consumer, y):
                // - Temporary memory allocated: 10 floats
                // - Loads: 64
                // - Stores: 39
                // - Calls to sin: 25

                // Note that my claimed amount of memory allocated doesn't
                // match the reference C code. Halide is performing one more
                // optimization under the hood. It folds the storage for the
                // producer down into a circular buffer of two
                // scanlines. Equivalent C would actually look like this:

                {
                    // Actually store 2 scanlines instead of 5
                    var producer_storage = new float[2, 5];
                    for (int yy = 0; yy < 4; yy++)
                    {
                        for (int py = yy; py < yy + 2; py++)
                        {
                            if (yy > 0 && py == yy)
                            {
                                continue;
                            }
                            for (int px = 0; px < 5; px++)
                            {
                                // Stores to producer_storage have their y coordinate bit-masked.
                                producer_storage[py & 1, px] = (float)Math.Sin(px * py);
                            }
                        }

                        // Compute a scanline of the consumer.
                        for (int xx = 0; xx < 4; xx++)
                        {
                            // Loads from producer_storage have their y coordinate bit-masked.
                            result[yy, xx] = (producer_storage[yy & 1, xx] +
                                              producer_storage[(yy + 1) & 1, xx] +
                                              producer_storage[yy & 1, xx + 1] +
                                              producer_storage[(yy + 1) & 1, xx + 1]) / 4;
                        }
                    }
                }
            }

            // We can do even better, by leaving the storage outermost, but
            // moving the computation into the innermost loop:
            {
                var producer = new HSFunc("producer_root_x");
                var consumer = new HSFunc("consumer_root_x");
                producer[x, y] = HSMath.Sin(x * y);
                consumer[x, y] = (producer[x, y] +
                                  producer[x, y + 1] +
                                  producer[x + 1, y] +
                                  producer[x + 1, y + 1]) / 4;


                // Store outermost, compute innermost.
                producer.StoreRoot().ComputeAt(consumer, x);

                producer.TraceStores();
                consumer.TraceStores();

                Console.WriteLine("\nEvaluating producer.store_root().ComputeAt(consumer, x)");
                consumer.Realize <float>(4, 4);

                // See figures/lesson_08_store_root_compute_x.gif for a
                // visualization.

                // You should see that producer and consumer now alternate on
                // a per-pixel basis. Here's the equivalent C:

                var result = new float[4, 4];

                // producer.store_root() implies that storage goes here, but
                // we can fold it down into a circular buffer of two
                // scanlines:
                var producer_storage = new float[2, 5];

                // For every pixel of the consumer:
                for (int yy = 0; yy < 4; yy++)
                {
                    for (int xx = 0; xx < 4; xx++)
                    {
                        // Compute enough of the producer to satisfy this
                        // pixel of the consumer, but skip values that we've
                        // already computed:
                        if (yy == 0 && xx == 0)
                        {
                            producer_storage[yy & 1, xx] = (float)Math.Sin(xx * yy);
                        }
                        if (yy == 0)
                        {
                            producer_storage[yy & 1, xx + 1] = (float)Math.Sin((xx + 1) * yy);
                        }
                        if (xx == 0)
                        {
                            producer_storage[(yy + 1) & 1, xx] = (float)Math.Sin(xx * (yy + 1));
                        }
                        producer_storage[(yy + 1) & 1, xx + 1] = (float)Math.Sin((xx + 1) * (yy + 1));

                        result[yy, xx] = (producer_storage[yy & 1, xx] +
                                          producer_storage[(yy + 1) & 1, xx] +
                                          producer_storage[yy & 1, xx + 1] +
                                          producer_storage[(yy + 1) & 1, xx + 1]) / 4;
                    }
                }

                Console.WriteLine("Pseudo-code for the schedule:");
                consumer.PrintLoopNest();
                Console.WriteLine();

                // The performance characteristics of this strategy are the
                // best so far. One of the four values of the producer we need
                // is probably still sitting in a register, so I won't count
                // it as a load:
                // producer.store_root().ComputeAt(consumer, x):
                // - Temporary memory allocated: 10 floats
                // - Loads: 48
                // - Stores: 56
                // - Calls to sin: 40
            }

            // So what's the catch? Why not always do
            // producer.store_root().ComputeAt(consumer, x) for this type of
            // code?
            //
            // The answer is parallelism. In both of the previous two
            // strategies we've assumed that values computed on previous
            // iterations are lying around for us to reuse. This assumes that
            // previous values of x or y happened earlier in time and have
            // finished. This is not true if you parallelize or vectorize
            // either loop. Darn. If you parallelize, Halide won't inject the
            // optimizations that skip work already done if there's a parallel
            // loop in between the store_at level and the ComputeAt level,
            // and won't fold the storage down into a circular buffer either,
            // which makes our store_root pointless.

            // We're running out of options. We can make new ones by
            // splitting. We can store_at or ComputeAt at the natural
            // variables of the consumer (x and y), or we can split x or y
            // into new inner and outer sub-variables and then schedule with
            // respect to those. We'll use this to express fusion in tiles:
            {
                var producer = new HSFunc("producer_tile");
                var consumer = new HSFunc("consumer_tile");
                producer[x, y] = HSMath.Sin(x * y);
                consumer[x, y] = (producer[x, y] +
                                  producer[x, y + 1] +
                                  producer[x + 1, y] +
                                  producer[x + 1, y + 1]) / 4;

                // We'll compute 8x8 of the consumer, in 4x4 tiles.
                var x_outer = new HSVar("x_outer");
                var y_outer = new HSVar("y_outer");
                var x_inner = new HSVar("x_inner");
                var y_inner = new HSVar("y_inner");
                consumer.Tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);

                // Compute the producer per tile of the consumer
                producer.ComputeAt(consumer, x_outer);

                // Notice that I wrote my schedule starting from the end of
                // the pipeline (the consumer). This is because the schedule
                // for the producer refers to x_outer, which we introduced
                // when we tiled the consumer. You can write it in the other
                // order, but it tends to be harder to read.

                // Turn on tracing.
                producer.TraceStores();
                consumer.TraceStores();

                Console.WriteLine("\nEvaluating:");
                Console.WriteLine("consumer.tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);");
                Console.WriteLine("producer.ComputeAt(consumer, x_outer);");
                consumer.Realize <float>(8, 8);

                // See figures/lesson_08_tile.gif for a visualization.

                // The producer and consumer now alternate on a per-tile
                // basis. Here's the equivalent C:

                var result = new float[8, 8];

                // For every tile of the consumer:
                for (int yy_outer = 0; yy_outer < 2; yy_outer++)
                {
                    for (int xx_outer = 0; xx_outer < 2; xx_outer++)
                    {
                        // Compute the x and y coords of the start of this tile.
                        int x_base = xx_outer * 4;
                        int y_base = yy_outer * 4;

                        // Compute enough of producer to satisfy this tile. A
                        // 4x4 tile of the consumer requires a 5x5 tile of the
                        // producer.
                        var producer_storage = new float[5, 5];
                        for (int py = y_base; py < y_base + 5; py++)
                        {
                            for (int px = x_base; px < x_base + 5; px++)
                            {
                                producer_storage[py - y_base, px - x_base] = (float)Math.Sin(px * py);
                            }
                        }

                        // Compute this tile of the consumer
                        for (int yy_inner = 0; yy_inner < 4; yy_inner++)
                        {
                            for (int xx_inner = 0; xx_inner < 4; xx_inner++)
                            {
                                int xx = x_base + xx_inner;
                                int yy = y_base + yy_inner;
                                result[yy, xx] =
                                    (producer_storage[yy - y_base, xx - x_base] +
                                     producer_storage[yy - y_base + 1, xx - x_base] +
                                     producer_storage[yy - y_base, xx - x_base + 1] +
                                     producer_storage[yy - y_base + 1, xx - x_base + 1]) / 4;
                            }
                        }
                    }
                }

                Console.WriteLine("Pseudo-code for the schedule:");
                consumer.PrintLoopNest();
                Console.WriteLine();

                // Tiling can make sense for problems like this one with
                // stencils that reach outwards in x and y. Each tile can be
                // computed independently in parallel, and the redundant work
                // done by each tile isn't so bad once the tiles get large
                // enough.
            }

            // Let's try a mixed strategy that combines what we have done with
            // splitting, parallelizing, and vectorizing. This is one that
            // often works well in practice for large images. If you
            // understand this schedule, then you understand 95% of scheduling
            // in Halide.
            {
                var producer = new HSFunc("producer_mixed");
                var consumer = new HSFunc("consumer_mixed");
                producer[x, y] = HSMath.Sin(x * y);
                consumer[x, y] = (producer[x, y] +
                                  producer[x, y + 1] +
                                  producer[x + 1, y] +
                                  producer[x + 1, y + 1]) / 4;

                // Split the y coordinate of the consumer into strips of 16 scanlines:
                var yo = new HSVar("yo");
                var yi = new HSVar("yi");
                consumer.Split(y, yo, yi, 16);
                // Compute the strips using a thread pool and a task queue.
                consumer.Parallel(yo);
                // Vectorize across x by a factor of four.
                consumer.Vectorize(x, 4);

                // Now store the producer per-strip. This will be 17 scanlines
                // of the producer (16+1), but hopefully it will fold down
                // into a circular buffer of two scanlines:
                producer.StoreAt(consumer, yo);
                // Within each strip, compute the producer per scanline of the
                // consumer, skipping work done on previous scanlines.
                producer.ComputeAt(consumer, yi);
                // Also vectorize the producer (because sin is vectorizable on x86 using SSE).
                producer.Vectorize(x, 4);

                // Let's leave tracing off this time, because we're going to
                // evaluate over a larger image.
                // consumer.TraceStores();
                // producer.TraceStores();

                var halide_result = consumer.Realize <float>(160, 160);

                // See figures/lesson_08_mixed.mp4 for a visualization.

                // Here's the equivalent (serial) C:

                var c_result = new float[160, 160];

                // For every strip of 16 scanlines (this loop is parallel in
                // the Halide version)
                for (int yyo = 0; yyo < 160 / 16 + 1; yyo++)
                {
                    // 16 doesn't divide 160, so push the last slice upwards
                    // to fit within [0, 159] (see lesson 05).
                    int y_base = yyo * 16;
                    if (y_base > 160 - 16)
                    {
                        y_base = 160 - 16;
                    }

                    // Allocate a two-scanline circular buffer for the producer
                    var producer_storage = new float[2, 161];

                    // For every scanline in the strip of 16:
                    for (int yyi = 0; yyi < 16; yyi++)
                    {
                        int yy = y_base + yyi;

                        for (int py = yy; py < yy + 2; py++)
                        {
                            // Skip scanlines already computed *within this task*
                            if (yyi > 0 && py == yy)
                            {
                                continue;
                            }

                            // Compute this scanline of the producer in 4-wide vectors
                            for (int x_vec = 0; x_vec < 160 / 4 + 1; x_vec++)
                            {
                                int x_base = x_vec * 4;
                                // 4 doesn't divide 161, so push the last vector left
                                // (see lesson 05).
                                if (x_base > 161 - 4)
                                {
                                    x_base = 161 - 4;
                                }
                                // If you're on x86, Halide generates SSE code for this part:
                                int[]   xx  = { x_base, x_base + 1, x_base + 2, x_base + 3 };
                                float[] vec = { (float)Math.Sin(xx[0] * py), (float)Math.Sin(xx[1] * py),
                                                (float)Math.Sin(xx[2] * py), (float)Math.Sin(xx[3] * py) };
                                producer_storage[py & 1, xx[0]] = vec[0];
                                producer_storage[py & 1, xx[1]] = vec[1];
                                producer_storage[py & 1, xx[2]] = vec[2];
                                producer_storage[py & 1, xx[3]] = vec[3];
                            }
                        }

                        // Now compute consumer for this scanline:
                        for (int x_vec = 0; x_vec < 160 / 4; x_vec++)
                        {
                            int x_base = x_vec * 4;
                            // Again, Halide's equivalent here uses SSE.
                            int[]   xx  = { x_base, x_base + 1, x_base + 2, x_base + 3 };
                            float[] vec =
                            {
                                (producer_storage[yy & 1, xx[0]] +
                                 producer_storage[(yy + 1) & 1, xx[0]] +
                                 producer_storage[yy & 1, xx[0] + 1] +
                                 producer_storage[(yy + 1) & 1, xx[0] + 1]) / 4,
                                (producer_storage[yy & 1, xx[1]] +
                                 producer_storage[(yy + 1) & 1, xx[1]] +
                                 producer_storage[yy & 1, xx[1] + 1] +
                                 producer_storage[(yy + 1) & 1, xx[1] + 1]) / 4,
                                (producer_storage[yy & 1, xx[2]] +
                                 producer_storage[(yy + 1) & 1, xx[2]] +
                                 producer_storage[yy & 1, xx[2] + 1] +
                                 producer_storage[(yy + 1) & 1, xx[2] + 1]) / 4,
                                (producer_storage[yy & 1, xx[3]] +
                                 producer_storage[(yy + 1) & 1, xx[3]] +
                                 producer_storage[yy & 1, xx[3] + 1] +
                                 producer_storage[(yy + 1) & 1, xx[3] + 1]) / 4
                            };

                            c_result[yy, xx[0]] = vec[0];
                            c_result[yy, xx[1]] = vec[1];
                            c_result[yy, xx[2]] = vec[2];
                            c_result[yy, xx[3]] = vec[3];
                        }
                    }
                }
                Console.WriteLine("Pseudo-code for the schedule:");
                consumer.PrintLoopNest();
                Console.WriteLine();

                // Look on my code, ye mighty, and despair!

                // Let's check the C result against the Halide result. Doing
                // this I found several bugs in my C implementation, which
                // should tell you something.
                for (int yy = 0; yy < 160; yy++)
                {
                    for (int xx = 0; xx < 160; xx++)
                    {
                        float error = halide_result[xx, yy] - c_result[yy, xx];
                        // It's floating-point math, so we'll allow some slop:
                        if (error < -0.001f || error > 0.001f)
                        {
                            Console.WriteLine("halide_result(%d, %d) = %f instead of %f",
                                              xx, yy, halide_result[xx, yy], c_result[yy, xx]);
                            return(-1);
                        }
                    }
                }
            }

            // This stuff is hard. We ended up in a three-way trade-off
            // between memory bandwidth, redundant work, and
            // parallelism. Halide can't make the correct choice for you
            // automatically (sorry). Instead it tries to make it easier for
            // you to explore various options, without messing up your
            // program. In fact, Halide promises that scheduling calls like
            // compute_root won't change the meaning of your algorithm -- you
            // should get the same bits back no matter how you schedule
            // things.

            // So be empirical! Experiment with various schedules and keep a
            // log of performance. Form hypotheses and then try to prove
            // yourself wrong. Don't assume that you just need to vectorize
            // your code by a factor of four and run it on eight cores and
            // you'll get 32x faster. This almost never works. Modern systems
            // are complex enough that you can't predict performance reliably
            // without running your code.

            // We suggest you start by scheduling all of your non-trivial
            // stages compute_root, and then work from the end of the pipeline
            // upwards, inlining, parallelizing, and vectorizing each stage in
            // turn until you reach the top.

            // Halide is not just about vectorizing and parallelizing your
            // code. That's not enough to get you very far. Halide is about
            // giving you tools that help you quickly explore different
            // trade-offs between locality, redundant work, and parallelism,
            // without messing up the actual result you're trying to compute.

            Console.WriteLine("Success!");
            return(0);
        }
예제 #3
0
        // Now a schedule that uses CUDA or OpenCL.
        public void ScheduleForGpu()
        {
            // We make the decision about whether to use the GPU for each
            // Func independently. If you have one Func computed on the
            // CPU, and the next computed on the GPU, Halide will do the
            // copy-to-gpu under the hood. For this pipeline, there's no
            // reason to use the CPU for any of the stages. Halide will
            // copy the input image to the GPU the first time we run the
            // pipeline, and leave it there to reuse on subsequent runs.

            // As before, we'll compute the LUT once at the start of the
            // pipeline.
            Lut.ComputeRoot();

            // Let's compute the look-up-table using the GPU in 16-wide
            // one-dimensional thread blocks. First we split the index
            // into blocks of size 16:
            var block  = new HSVar("block");
            var thread = new HSVar("thread");

            Lut.Split(I, block, thread, 16);
            // Then we tell cuda that our Vars 'block' and 'thread'
            // correspond to CUDA's notions of blocks and threads, or
            // OpenCL's notions of thread groups and threads.
            Lut.GpuBlocks(block)
            .GpuThreads(thread);

            // This is a very common scheduling pattern on the GPU, so
            // there's a shorthand for it:

            // lut.gpu_tile(i, block, thread, 16);

            // Func::gpu_tile behaves the same as Func::tile, except that
            // it also specifies that the tile coordinates correspond to
            // GPU blocks, and the coordinates within each tile correspond
            // to GPU threads.

            // Compute color channels innermost. Promise that there will
            // be three of them and unroll across them.
            Curved.Reorder(C, X, Y)
            .Bound(C, 0, 3)
            .Unroll(C);

            // Compute curved in 2D 8x8 tiles using the GPU.
            Curved.GpuTile(X, Y, XO, YO, XI, YI, 8, 8);

            // This is equivalent to:
            // curved.tile(x, y, xo, yo, xi, yi, 8, 8)
            //       .gpu_blocks(xo, yo)
            //       .gpu_threads(xi, yi);

            // We'll leave sharpen as inlined into curved.

            // Compute the padded input as needed per GPU block, storing
            // the intermediate result in shared memory. In the schedule
            // above xo corresponds to GPU blocks.
            Padded.ComputeAt(Curved, XO);

            // Use the GPU threads for the x and y coordinates of the
            // padded input.
            Padded.GpuThreads(X, Y);

            // JIT-compile the pipeline for the GPU. CUDA, OpenCL, or
            // Metal are not enabled by default. We have to construct a
            // Target object, enable one of them, and then pass that
            // target object to compile_jit. Otherwise your CPU will very
            // slowly pretend it's a GPU, and use one thread per output
            // pixel.

            // Start with a target suitable for the machine you're running
            // this on.
            var target = HS.GetHostTarget();

            // Then enable OpenCL or Metal, depending on which platform
            // we're on. OS X doesn't update its OpenCL drivers, so they
            // tend to be broken. CUDA would also be a fine choice on
            // machines with NVidia GPUs.
            if (target.OS == HSOperatingSystem.OSX)
            {
                target.SetFeature(HSFeature.Metal);
            }
            else
            {
                target.SetFeature(HSFeature.OpenCL);
            }

            // Uncomment the next line and comment out the lines above to
            // try CUDA instead.
            //target.SetFeature(HSFeature.CUDA);

            // If you want to see all of the OpenCL, Metal, or CUDA API
            // calls done by the pipeline, you can also enable the Debug
            // flag. This is helpful for figuring out which stages are
            // slow, or when CPU -> GPU copies happen. It hurts
            // performance though, so we'll leave it commented out.
            // target.set_feature(Target::Debug);

            Curved.CompileJit(target);
        }
예제 #4
0
        public static int Main(string[] args)
        {
            // We're going to define and schedule our gradient function in
            // several different ways, and see what order pixels are computed
            // in.

            var x = new HSVar("x");
            var y = new HSVar("y");

            // First we observe the default ordering.
            {
                var gradient = new HSFunc("gradient");
                gradient[x, y] = x + y;
                gradient.TraceStores();

                // By default we walk along the rows and then down the
                // columns. This means x varies quickly, and y varies
                // slowly. x is the column and y is the row, so this is a
                // row-major traversal.
                Console.WriteLine("Evaluating gradient row-major");
                var output = gradient.Realize <int>(4, 4);

                // See figures/lesson_05_row_major.gif for a visualization of
                // what this did.

                // The equivalent C is:
                Console.WriteLine("Equivalent C:");
                for (int yy = 0; yy < 4; yy++)
                {
                    for (int xx = 0; xx < 4; xx++)
                    {
                        Console.WriteLine($"Evaluating at x = {xx}, y = {yy}: {xx + yy}");
                    }
                }
                Console.WriteLine("\n");

                // Tracing is one useful way to understand what a schedule is
                // doing. You can also ask Halide to print out pseudocode
                // showing what loops Halide is generating:
                Console.WriteLine("Pseudo-code for the schedule:");
                gradient.PrintLoopNest();
                Console.WriteLine();

                // Because we're using the default ordering, it should print:
                // compute gradient:
                //   for y:
                //     for x:
                //       gradient(...) = ...
            }

            // Reorder variables.
            {
                var gradient = new HSFunc("gradient_col_major");
                gradient[x, y] = x + y;
                gradient.TraceStores();

                // If we reorder x and y, we can walk down the columns
                // instead. The reorder call takes the arguments of the func,
                // and sets a new nesting order for the for loops that are
                // generated. The arguments are specified from the innermost
                // loop out, so the following call puts y in the inner loop:
                gradient.Reorder(y, x);

                // This means y (the row) will vary quickly, and x (the
                // column) will vary slowly, so this is a column-major
                // traversal.

                Console.WriteLine("Evaluating gradient column-major");
                var output = gradient.Realize <int>(4, 4);

                // See figures/lesson_05_col_major.gif for a visualization of
                // what this did.

                Console.WriteLine("Equivalent C:");
                for (int xx = 0; xx < 4; xx++)
                {
                    for (int yy = 0; yy < 4; yy++)
                    {
                        Console.WriteLine($"Evaluating at x = {xx}, y = {yy}: {xx + yy}");
                    }
                }
                Console.WriteLine();

                // If we print pseudo-code for this schedule, we'll see that
                // the loop over y is now inside the loop over x.
                Console.WriteLine("Pseudo-code for the schedule:");
                gradient.PrintLoopNest();
                Console.WriteLine();
            }

            // Split a variable into two.
            {
                var gradient = new HSFunc("gradient_split");
                gradient[x, y] = x + y;
                gradient.TraceStores();

                // The most powerful primitive scheduling operation you can do
                // to a var is to split it into inner and outer sub-variables:
                var x_outer = new HSVar("x_outer");
                var x_inner = new HSVar("x_inner");
                gradient.Split(x, x_outer, x_inner, 2);

                // This breaks the loop over x into two nested loops: an outer
                // one over x_outer, and an inner one over x_inner. The last
                // argument to split was the "split factor". The inner loop
                // runs from zero to the split factor. The outer loop runs
                // from zero to the extent required of x (4 in this case)
                // divided by the split factor. Within the loops, the old
                // variable is defined to be outer * factor + inner. If the
                // old loop started at a value other than zero, then that is
                // also added within the loops.

                Console.WriteLine("Evaluating gradient with x split into x_outer and x_inner ");
                var output = gradient.Realize <int>(4, 4);

                Console.WriteLine("Equivalent C:");
                for (int yy = 0; yy < 4; yy++)
                {
                    for (int xOuter = 0; xOuter < 2; xOuter++)
                    {
                        for (int xInner = 0; xInner < 2; xInner++)
                        {
                            int xx = xOuter * 2 + xInner;
                            Console.WriteLine($"Evaluating at x = {xx}, y = {yy}: {xx + yy}");
                        }
                    }
                }
                Console.WriteLine();

                Console.WriteLine("Pseudo-code for the schedule:");
                gradient.PrintLoopNest();
                Console.WriteLine();

                // Note that the order of evaluation of pixels didn't actually
                // change! Splitting by itself does nothing, but it does open
                // up all of the scheduling possibilities that we will explore
                // below.
            }

            // Fuse two variables into one.
            {
                var gradient = new HSFunc("gradient_fused");
                gradient[x, y] = x + y;

                // The opposite of splitting is 'fusing'. Fusing two variables
                // merges the two loops into a single for loop over the
                // product of the extents. Fusing is less important than
                // splitting, but it also sees use (as we'll see later in this
                // lesson). Like splitting, fusing by itself doesn't change
                // the order of evaluation.
                var fused = new HSVar("fused");
                gradient.Fuse(x, y, fused);

                Console.WriteLine("Evaluating gradient with x and y fused");
                var output = gradient.Realize <int>(4, 4);

                Console.WriteLine("Equivalent C:");
                for (int f = 0; f < 4 * 4; f++)
                {
                    int yy = f / 4;
                    int xx = f % 4;
                    Console.WriteLine($"Evaluating at x = {xx}, y = {yy}: {xx + yy}");
                }
                Console.WriteLine();

                Console.WriteLine("Pseudo-code for the schedule:");
                gradient.PrintLoopNest();
                Console.WriteLine();
            }

            // Evaluating in tiles.
            {
                var gradient = new HSFunc("gradient_tiled");
                gradient[x, y] = x + y;
                gradient.TraceStores();

                // Now that we can both split and reorder, we can do tiled
                // evaluation. Let's split both x and y by a factor of four,
                // and then reorder the vars to express a tiled traversal.
                //
                // A tiled traversal splits the domain into small rectangular
                // tiles, and outermost iterates over the tiles, and within
                // that iterates over the points within each tile. It can be
                // good for performance if neighboring pixels use overlapping
                // input data, for example in a blur. We can express a tiled
                // traversal like so:
                var x_outer = new HSVar("x_outer");
                var x_inner = new HSVar("x_inner");
                var y_outer = new HSVar("y_outer");
                var y_inner = new HSVar("y_inner");
                gradient.Split(x, x_outer, x_inner, 4);
                gradient.Split(y, y_outer, y_inner, 4);
                gradient.Reorder(x_inner, y_inner, x_outer, y_outer);

                // This pattern is common enough that there's a shorthand for it:
                // gradient.tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);

                Console.WriteLine("Evaluating gradient in 4x4 tiles");
                var output = gradient.Realize <int>(8, 8);

                // See figures/lesson_05_tiled.gif for a visualization of this
                // schedule.

                Console.WriteLine("Equivalent C:");
                for (int yOuter = 0; yOuter < 2; yOuter++)
                {
                    for (int xOuter = 0; xOuter < 2; xOuter++)
                    {
                        for (int yInner = 0; yInner < 4; yInner++)
                        {
                            for (int xInner = 0; xInner < 4; xInner++)
                            {
                                int xx = xOuter * 4 + xInner;
                                int yy = yOuter * 4 + yInner;
                                Console.WriteLine($"Evaluating at x = {xx}, y = {yy}: {xx + yy}");
                            }
                        }
                    }
                }
                Console.WriteLine();

                Console.WriteLine("Pseudo-code for the schedule:");
                gradient.PrintLoopNest();
                Console.WriteLine();
            }

            // Evaluating in vectors.
            {
                var gradient = new HSFunc("gradient_in_vectors");
                gradient[x, y] = x + y;
                gradient.TraceStores();

                // The nice thing about splitting is that it guarantees the
                // inner variable runs from zero to the split factor. Most of
                // the time the split-factor will be a compile-time constant,
                // so we can replace the loop over the inner variable with a
                // single vectorized computation. This time we'll split by a
                // factor of four, because on X86 we can use SSE to compute in
                // 4-wide vectors.
                var x_outer = new HSVar("x_outer");
                var x_inner = new HSVar("x_inner");
                gradient.Split(x, x_outer, x_inner, 4);
                gradient.Vectorize(x_inner);

                // Splitting and then vectorizing the inner variable is common
                // enough that there's a short-hand for it. We could have also
                // said:
                //
                // gradient.vectorize(x, 4);
                //
                // which is equivalent to:
                //
                // gradient.split(x, x, x_inner, 4);
                // gradient.vectorize(x_inner);
                //
                // Note that in this case we reused the name 'x' as the new
                // outer variable. Later scheduling calls that refer to x
                // will refer to this new outer variable named x.

                // This time we'll evaluate over an 8x4 box, so that we have
                // more than one vector of work per scanline.
                Console.WriteLine("Evaluating gradient with x_inner vectorized ");
                var output = gradient.Realize <int>(8, 4);

                // See figures/lesson_05_vectors.gif for a visualization.

                Console.WriteLine("Equivalent C:");
                for (int yy = 0; yy < 4; yy++)
                {
                    for (int xOuter = 0; xOuter < 2; xOuter++)
                    {
                        // The loop over x_inner has gone away, and has been
                        // replaced by a vectorized version of the
                        // expression. On x86 processors, Halide generates SSE
                        // for all of this.
                        int[] x_vec = { xOuter * 4 + 0,
                              xOuter * 4 + 1,
                              xOuter * 4 + 2,
                              xOuter * 4 + 3 };
                        int[] val = { x_vec[0] + yy,
                                      x_vec[1] + yy,
                                      x_vec[2] + yy,
                                      x_vec[3] + yy };
                        Console.WriteLine($"Evaluating at " +
                                          $"<{x_vec[0]}, {x_vec[1]}, {x_vec[2]}, {x_vec[3]}>, " +
                                          $"<{yy}, {yy}, {yy}, {yy}>: " +
                                          $"<{val[0]}, {val[1]}, {val[2]}, {val[3]}>");
                    }
                }
                Console.WriteLine();

                Console.WriteLine("Pseudo-code for the schedule:");
                gradient.PrintLoopNest();
                Console.WriteLine();
            }

            // Unrolling a loop.
            {
                var gradient = new HSFunc("gradient_unroll");
                gradient[x, y] = x + y;
                gradient.TraceStores();

                // If multiple pixels share overlapping data, it can make
                // sense to unroll a computation so that shared values are
                // only computed or loaded once. We do this similarly to how
                // we expressed vectorizing. We split a dimension and then
                // fully unroll the loop of the inner variable. Unrolling
                // doesn't change the order in which things are evaluated.
                var x_outer = new HSVar("x_outer");
                var x_inner = new HSVar("x_inner");
                gradient.Split(x, x_outer, x_inner, 2);
                gradient.Unroll(x_inner);

                // The shorthand for this is:
                // gradient.unroll(x, 2);

                Console.WriteLine("Evaluating gradient unrolled by a factor of two");
                var result = gradient.Realize <int>(4, 4);

                Console.WriteLine("Equivalent C:");
                for (int yy = 0; yy < 4; yy++)
                {
                    for (int xOuter = 0; xOuter < 2; xOuter++)
                    {
                        // Instead of a for loop over x_inner, we get two
                        // copies of the innermost statement.
                        {
                            int xInner = 0;
                            int xx     = xOuter * 2 + xInner;
                            Console.WriteLine($"Evaluating at x = {xx}, y = {yy}: {xx + yy}");
                        }
                        {
                            int xInner = 1;
                            int xx     = xOuter * 2 + xInner;
                            Console.WriteLine($"Evaluating at x = {xx}, y = {yy}: {xx + yy}");
                        }
                    }
                }
                Console.WriteLine();

                Console.WriteLine("Pseudo-code for the schedule:");
                gradient.PrintLoopNest();
                Console.WriteLine();
            }

            // Splitting by factors that don't divide the extent.
            {
                var gradient = new HSFunc("gradient_split_7x2");
                gradient[x, y] = x + y;
                gradient.TraceStores();

                // Splitting guarantees that the inner loop runs from zero to
                // the split factor, which is important for the uses we saw
                // above. So what happens when the total extent we wish to
                // evaluate x over isn't a multiple of the split factor? We'll
                // split by a factor three, and we'll evaluate gradient over a
                // 7x2 box instead of the 4x4 box we've been using.
                var x_outer = new HSVar("x_outer");
                var x_inner = new HSVar("x_inner");
                gradient.Split(x, x_outer, x_inner, 3);

                Console.WriteLine("Evaluating gradient over a 7x2 box with x split by three ");
                var output = gradient.Realize <int>(7, 2);

                // See figures/lesson_05_split_7_by_3.gif for a visualization
                // of what happened. Note that some points get evaluated more
                // than once!

                Console.WriteLine("Equivalent C:");
                for (int yy = 0; yy < 2; yy++)
                {
                    for (int xOuter = 0; xOuter < 3; xOuter++)   // Now runs from 0 to 2
                    {
                        for (int xInner = 0; xInner < 3; xInner++)
                        {
                            int xx = xOuter * 3;
                            // Before we add x_inner, make sure we don't
                            // evaluate points outside of the 7x2 box. We'll
                            // clamp x to be at most 4 (7 minus the split
                            // factor).
                            if (xx > 4)
                            {
                                xx = 4;
                            }
                            xx += xInner;
                            Console.WriteLine($"Evaluating at x = {xx}, y = {yy}: {xx + yy}");
                        }
                    }
                }
                Console.WriteLine();

                Console.WriteLine("Pseudo-code for the schedule:");
                gradient.PrintLoopNest();
                Console.WriteLine();

                // If you read the output, you'll see that some coordinates
                // were evaluated more than once. That's generally OK, because
                // pure Halide functions have no side-effects, so it's safe to
                // evaluate the same point multiple times. If you're calling
                // out to C functions like we are, it's your responsibility to
                // make sure you can handle the same point being evaluated
                // multiple times.

                // The general rule is: If we require x from x_min to x_min + x_extent, and
                // we split by a factor 'factor', then:
                //
                // x_outer runs from 0 to (x_extent + factor - 1)/factor
                // x_inner runs from 0 to factor
                // x = min(x_outer * factor, x_extent - factor) + x_inner + x_min
                //
                // In our example, x_min was 0, x_extent was 7, and factor was 3.

                // However, if you write a Halide function with an update
                // definition (see lesson 9), then it is not safe to evaluate
                // the same point multiple times, so we won't apply this
                // trick. Instead the range of values computed will be rounded
                // up to the next multiple of the split factor.
            }

            // Fusing, tiling, and parallelizing.
            {
                // We saw in the previous lesson that we can parallelize
                // across a variable. Here we combine it with fusing and
                // tiling to express a useful pattern - processing tiles in
                // parallel.

                // This is where fusing shines. Fusing helps when you want to
                // parallelize across multiple dimensions without introducing
                // nested parallelism. Nested parallelism (parallel for loops
                // within parallel for loops) is supported by Halide, but
                // often gives poor performance compared to fusing the
                // parallel variables into a single parallel for loop.

                var gradient = new HSFunc("gradient_fused_tiles");
                gradient[x, y] = x + y;
                gradient.TraceStores();

                // First we'll tile, then we'll fuse the tile indices and
                // parallelize across the combination.
                var x_outer    = new HSVar("x_outer");
                var y_outer    = new HSVar("y_outer");
                var x_inner    = new HSVar("x_inner");
                var y_inner    = new HSVar("y_inner");
                var tile_index = new HSVar("tile_index");
                gradient.Tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);
                gradient.Fuse(x_outer, y_outer, tile_index);
                gradient.Parallel(tile_index);

                // The scheduling calls all return a reference to the Func, so
                // you can also chain them together into a single statement to
                // make things slightly clearer:
                //
                // gradient
                //     .tile(x, y, x_outer, y_outer, x_inner, y_inner, 2, 2)
                //     .fuse(x_outer, y_outer, tile_index)
                //     .parallel(tile_index);


                Console.WriteLine("Evaluating gradient tiles in parallel");
                var output = gradient.Realize <int>(8, 8);

                // The tiles should occur in arbitrary order, but within each
                // tile the pixels will be traversed in row-major order. See
                // figures/lesson_05_parallel_tiles.gif for a visualization.

                Console.WriteLine("Equivalent (serial) C:\n");
                // This outermost loop should be a parallel for loop, but that's hard in C.
                for (int ti = 0; ti < 4; ti++)
                {
                    int yOuter = ti / 2;
                    int xOuter = ti % 2;
                    for (int j_inner = 0; j_inner < 4; j_inner++)
                    {
                        for (int i_inner = 0; i_inner < 4; i_inner++)
                        {
                            int j = yOuter * 4 + j_inner;
                            int i = xOuter * 4 + i_inner;
                            Console.WriteLine($"Evaluating at x = {i}, y = {j}: {i + j}");
                        }
                    }
                }

                Console.WriteLine();

                Console.WriteLine("Pseudo-code for the schedule:");
                gradient.PrintLoopNest();
                Console.WriteLine();
            }

            // Putting it all together.
            {
                // Are you ready? We're going to use all of the features above now.
                var gradient_fast = new HSFunc("gradient_fast");
                gradient_fast[x, y] = x + y;

                // We'll process 64x64 tiles in parallel.
                var x_outer    = new HSVar("x_outer");
                var y_outer    = new HSVar("y_outer");
                var x_inner    = new HSVar("x_inner");
                var y_inner    = new HSVar("y_inner");
                var tile_index = new HSVar("tile_index");
                gradient_fast
                .Tile(x, y, x_outer, y_outer, x_inner, y_inner, 64, 64)
                .Fuse(x_outer, y_outer, tile_index)
                .Parallel(tile_index);

                // We'll compute two scanlines at once while we walk across
                // each tile. We'll also vectorize in x. The easiest way to
                // express this is to recursively tile again within each tile
                // into 4x2 subtiles, then vectorize the subtiles across x and
                // unroll them across y:
                var x_inner_outer = new HSVar("x_inner_outer");
                var y_inner_outer = new HSVar("y_inner_outer");
                var x_vectors     = new HSVar("x_vectors");
                var y_pairs       = new HSVar("y_pairs");
                gradient_fast
                .Tile(x_inner, y_inner, x_inner_outer, y_inner_outer, x_vectors, y_pairs, 4, 2)
                .Vectorize(x_vectors)
                .Unroll(y_pairs);

                // Note that we didn't do any explicit splitting or
                // reordering. Those are the most important primitive
                // operations, but mostly they are buried underneath tiling,
                // vectorizing, or unrolling calls.

                // Now let's evaluate this over a range which is not a
                // multiple of the tile size.

                // If you like you can turn on tracing, but it's going to
                // produce a lot of printfs. Instead we'll compute the answer
                // both in C and Halide and see if the answers match.
                var result = gradient_fast.Realize <int>(350, 250);

                // See figures/lesson_05_fast.mp4 for a visualization.

                Console.WriteLine("Checking Halide result against equivalent C...");
                for (int tileIndex = 0; tileIndex < 6 * 4; tileIndex++)
                {
                    int yOuter = tileIndex / 4;
                    int xOuter = tileIndex % 4;
                    for (int yInnerOuter = 0; yInnerOuter < 64 / 2; yInnerOuter++)
                    {
                        for (int xInnerOuter = 0; xInnerOuter < 64 / 4; xInnerOuter++)
                        {
                            // We're vectorized across x
                            int   xx   = Math.Min(xOuter * 64, 350 - 64) + xInnerOuter * 4;
                            int[] xVec = { xx + 0,
                                           xx + 1,
                                           xx + 2,
                                           xx + 3 };

                            // And we unrolled across y
                            int yBase = Math.Min(yOuter * 64, 250 - 64) + yInnerOuter * 2;
                            {
                                // y_pairs = 0
                                int   yy   = yBase + 0;
                                int[] yVec = { yy, yy, yy, yy };
                                int[] val  = { xVec[0] + yVec[0],
                                               xVec[1] + yVec[1],
                                               xVec[2] + yVec[2],
                                               xVec[3] + yVec[3] };

                                // Check the result.
                                for (int i = 0; i < 4; i++)
                                {
                                    if (result[xVec[i], yVec[i]] != val[i])
                                    {
                                        Console.WriteLine($"There was an error at {xVec[i]} {yVec[i]}!");
                                        return(-1);
                                    }
                                }
                            }
                            {
                                // y_pairs = 1
                                int   yy   = yBase + 1;
                                int[] yVec = { yy, yy, yy, yy };
                                int[] val  = { xVec[0] + yVec[0],
                                               xVec[1] + yVec[1],
                                               xVec[2] + yVec[2],
                                               xVec[3] + yVec[3] };

                                // Check the result.
                                for (int i = 0; i < 4; i++)
                                {
                                    if (result[xVec[i], yVec[i]] != val[i])
                                    {
                                        Console.WriteLine($"There was an error at {xVec[i]} {yVec[i]}!");
                                        return(-1);
                                    }
                                }
                            }
                        }
                    }
                }
                Console.WriteLine();

                Console.WriteLine("Pseudo-code for the schedule:");
                gradient_fast.PrintLoopNest();
                Console.WriteLine();

                // Note that in the Halide version, the algorithm is specified
                // once at the top, separately from the optimizations, and there
                // aren't that many lines of code total. Compare this to the C
                // version. There's more code (and it isn't even parallelized or
                // vectorized properly). More annoyingly, the statement of the
                // algorithm (the result is x plus y) is buried in multiple places
                // within the mess. This C code is hard to write, hard to read,
                // hard to debug, and hard to optimize further. This is why Halide
                // exists.
            }


            Console.WriteLine("Success!");
            return(0);
        }