예제 #1
0
        // Now we define methods that give our pipeline several different
        // schedules.
        public void ScheduleForCpu()
        {
            // Compute the look-up-table ahead of time.
            Lut.ComputeRoot();

            // Compute color channels innermost. Promise that there will
            // be three of them and unroll across them.
            Curved.Reorder(C, X, Y)
            .Bound(C, 0, 3)
            .Unroll(C);

            // Look-up-tables don't vectorize well, so just parallelize
            // curved in slices of 16 scanlines.
            var yo = new HSVar("yo");
            var yi = new HSVar("yi");

            Curved.Split(Y, yo, yi, 16)
            .Parallel(yo);

            // Compute sharpen as needed per scanline of curved.
            Sharpen.ComputeAt(Curved, yi);

            // Vectorize the sharpen. It's 16-bit so we'll vectorize it 8-wide.
            Sharpen.Vectorize(X, 8);

            // Compute the padded input as needed per scanline of curved,
            // reusing previous values computed within the same strip of
            // 16 scanlines.
            Padded.StoreAt(Curved, yo)
            .ComputeAt(Curved, yi);

            // Also vectorize the padding. It's 8-bit, so we'll vectorize
            // 16-wide.
            Padded.Vectorize(X, 16);

            // JIT-compile the pipeline for the CPU.
            Curved.CompileJit();
        }
예제 #2
0
        public static int Main(string[] args)
        {
            // First we'll declare some Vars to use below.
            var x  = new HSVar("x");
            var y  = new HSVar("y");
            var xo = new HSVar("xo");
            var yo = new HSVar("yo");
            var xi = new HSVar("xi");
            var yi = new HSVar("yi");

            // This lesson will be about "wrapping" a Func or an ImageParam using the
            // Func::in and ImageParam::in directives
            {
                {
                    // Consider a simple two-stage pipeline:
                    var f = new HSFunc("f_local");
                    var g = new HSFunc("g_local");
                    f[x, y] = x + y;
                    g[x, y] = 2 * f[x, y] + 3;

                    f.ComputeRoot();

                    // This produces the following loop nests:
                    // for y:
                    //   for x:
                    //     f(x, y) = x + y
                    // for y:
                    //   for x:
                    //     g(x, y) = 2 * f(x, y) + 3

                    // Using Func::in, we can interpose a new Func in between f
                    // and g using the schedule alone:
                    HSFunc f_in_g = f.In(g);
                    f_in_g.ComputeRoot();

                    // Equivalently, we could also chain the schedules like so:
                    // f.in(g).ComputeRoot();

                    // This produces the following three loop nests:
                    // for y:
                    //   for x:
                    //     f(x, y) = x + y
                    // for y:
                    //   for x:
                    //     f_in_g(x, y) = f(x, y)
                    // for y:
                    //   for x:
                    //     g(x, y) = 2 * f_in_g(x, y) + 3

                    g.Realize <int>(5, 5);

                    // See figures/lesson_19_wrapper_local.mp4 for a visualization.
                }

                // The schedule directive f.in(g) replaces all calls to 'f'
                // inside 'g' with a wrapper Func and then returns that
                // wrapper. Essentially, it rewrites the original pipeline
                // above into the following:
                {
                    var f_in_g = new HSFunc("f_in_g");
                    var f      = new HSFunc("f");
                    var g      = new HSFunc("g");
                    f[x, y]      = x + y;
                    f_in_g[x, y] = f[x, y];
                    g[x, y]      = 2 * f_in_g[x, y] + 3;

                    f.ComputeRoot();
                    f_in_g.ComputeRoot();
                    g.ComputeRoot();
                }

                // In isolation, such a transformation seems pointless, but it
                // can be used for a variety of scheduling tricks.
            }

            {
                // In the schedule above, only the calls to 'f' made by 'g'
                // are replaced. Other calls made to f would still call 'f'
                // directly. If we wish to globally replace all calls to 'f'
                // with a single wrapper, we simply say f.in().

                // Consider a three stage pipeline, with two consumers of f:
                var f = new HSFunc("f_global");
                var g = new HSFunc("g_global");
                var h = new HSFunc("h_global");
                f[x, y] = x + y;
                g[x, y] = 2 * f[x, y];
                h[x, y] = 3 + g[x, y] - f[x, y];
                f.ComputeRoot();
                g.ComputeRoot();
                h.ComputeRoot();

                // We will replace all calls to 'f' inside both 'g' and 'h'
                // with calls to a single wrapper:
                f.In().ComputeRoot();

                // The equivalent loop nests are:
                // for y:
                //   for x:
                //     f(x, y) = x + y
                // for y:
                //   for x:
                //     f_in(x, y) = f(x, y)
                // for y:
                //   for x:
                //     g(x, y) = 2 * f_in(x, y)
                // for y:
                //   for x:
                //     h(x, y) = 3 + g(x, y) - f_in(x, y)

                h.Realize <int>(5, 5);

                // See figures/lesson_19_wrapper_global.mp4 and for a
                // visualization of what this did.
            }

            {
                // We could also give g and h their own unique wrappers of
                // f. This time we'll schedule them each inside the loop nests
                // of the consumer, which is not something we could do with a
                // single global wrapper.

                var f = new HSFunc("f_unique");
                var g = new HSFunc("g_unique");
                var h = new HSFunc("h_unique");
                f[x, y] = x + y;
                g[x, y] = 2 * f[x, y];
                h[x, y] = 3 + g[x, y] - f[x, y];

                f.ComputeRoot();
                g.ComputeRoot();
                h.ComputeRoot();

                f.In(g).ComputeAt(g, y);
                f.In(h).ComputeAt(h, y);

                // This creates the loop nests:
                // for y:
                //   for x:
                //     f(x, y) = x + y
                // for y:
                //   for x:
                //     f_in_g(x, y) = f(x, y)
                //   for x:
                //     g(x, y) = 2 * f_in_g(x, y)
                // for y:
                //   for x:
                //     f_in_h(x, y) = f(x, y)
                //   for x:
                //     h(x, y) = 3 + g(x, y) - f_in_h(x, y)

                h.Realize <int>(5, 5);
                // See figures/lesson_19_wrapper_unique.mp4 for a visualization.
            }

            {
                // So far this may seem like a lot of pointless copying of
                // memory. Func::in can be combined with other scheduling
                // directives for a variety of purposes. The first we will
                // examine is creating distinct realizations of a Func for
                // several consumers and scheduling each differently.

                // We'll start with nearly the same pipeline.
                var f = new HSFunc("f_sched");
                var g = new HSFunc("g_sched");
                var h = new HSFunc("h_sched");
                f[x, y] = x + y;
                g[x, y] = 2 * f[x, y];
                // h will use a far-away region of f
                h[x, y] = 3 + g[x, y] - f[x + 93, y - 87];

                // This time we'll inline f.
                // f.ComputeRoot();
                g.ComputeRoot();
                h.ComputeRoot();

                f.In(g).ComputeAt(g, y);
                f.In(h).ComputeAt(h, y);

                // g and h now call f via distinct wrappers. The wrappers are
                // scheduled, but f is not, which means that f is inlined into
                // its two wrappers. They will each independently compute the
                // region of f required by their consumer. If we had scheduled
                // f ComputeRoot, we'd be computing the bounding box of the
                // region required by g and the region required by h, which
                // would mostly be unused data.

                // We can also schedule each of these wrappers
                // differently. For scheduling purposes, wrappers inherit the
                // pure vars of the Func they wrap, so we use the same x and y
                // that we used when defining f:
                f.In(g).Vectorize(x, 4);
                f.In(h).Split(x, xo, xi, 2).Reorder(xo, xi);

                // Note that calling f.in(g) a second time returns the wrapper
                // already created by the first call, it doesn't make a new one.

                h.Realize <int>(8, 8);
                // See figures/lesson_19_wrapper_vary_schedule.mp4 for a
                // visualization.

                // Note that because f is inlined into its two wrappers, it is
                // the wrappers that do the work of computing f, rather than
                // just loading from an existing computed realization.
            }

            {
                // Func::in is useful to stage loads from a Func via some
                // smaller intermediate buffer, perhaps on the stack or in
                // shared GPU memory.

                // Consider a pipeline that transposes some ComputeRoot'd Func:

                var f = new HSFunc("f_transpose");
                var g = new HSFunc("g_transpose");
                f[x, y] = HSMath.Sin(((x + y) * HSMath.Sqrt(y)) / 10);
                f.ComputeRoot();

                g[x, y] = f[y, x];

                // The execution strategy we want is to load an 4x4 tile of f
                // into registers, transpose it in-register, and then write it
                // out as an 4x4 tile of g. We will use Func::in to express this:

                HSFunc f_tile = f.In(g);

                // We now have a three stage pipeline:
                // f -> f_tile -> g

                // f_tile will load vectors of f, and store them transposed
                // into registers. g will then write this data back to main
                // memory.
                g.Tile(x, y, xo, yo, xi, yi, 4, 4)
                .Vectorize(xi)
                .Unroll(yi);

                // We will compute f_transpose at tiles of g, and use
                // Func::reorder_storage to state that f_transpose should be
                // stored column-major, so that the loads to it done by g can
                // be dense vector loads.
                f_tile.ComputeAt(g, xo)
                .ReorderStorage(y, x)
                .Vectorize(x)
                .Unroll(y);

                // We take care to make sure f_transpose is only ever accessed
                // at constant indicies. The full unrolling/vectorization of
                // all loops that exist inside its compute_at level has this
                // effect. Allocations that are only ever accessed at constant
                // indices can be promoted into registers.

                g.Realize <float>(16, 16);
                // See figures/lesson_19_transpose.mp4 for a visualization
            }

            {
                // ImageParam::in behaves the same way as Func::in, and you
                // can use it to stage loads in similar ways. Instead of
                // transposing again, we'll use ImageParam::in to stage tiles
                // of an input image into GPU shared memory, effectively using
                // shared/local memory as an explicitly-managed cache.

                var img = new HSImageParam <int>(2);

                // We will compute a small blur of the input.
                var blur = new HSFunc("blur");
                blur[x, y] = (img[x - 1, y - 1] + img[x, y - 1] + img[x + 1, y - 1] +
                              img[x - 1, y] + img[x, y] + img[x + 1, y] +
                              img[x - 1, y + 1] + img[x, y + 1] + img[x + 1, y + 1]);

                blur.ComputeRoot().GpuTile(x, y, xo, yo, xi, yi, 8, 8);

                // The wrapper Func created by ImageParam::in has pure vars
                // named _0, _1, etc. Schedule it per tile of "blur", and map
                // _0 and _1 to gpu threads.
                img.In(blur).ComputeAt(blur, xo).GpuThreads(HS._0, HS._1);

                // Without Func::in, computing an 8x8 tile of blur would do
                // 8*8*9 loads to global memory. With Func::in, the wrapper
                // does 10*10 loads to global memory up front, and then blur
                // does 8*8*9 loads to shared/local memory.

                // Select an appropriate GPU API, as we did in lesson 12
                var target = HS.GetHostTarget();
                if (target.OS == HSOperatingSystem.OSX)
                {
                    target.SetFeature(HSFeature.Metal);
                }
                else
                {
                    target.SetFeature(HSFeature.OpenCL);
                }

                // Create an interesting input image to use.
                var input = new HSBuffer <int>(258, 258);
                input.SetMin(-1, -1);
                for (int yy = input.Top; yy <= input.Bottom; yy++)
                {
                    for (int xx = input.Left; xx <= input.Right; xx++)
                    {
                        input[xx, yy] = xx * 17 + yy % 4;
                    }
                }

                img.Set(input);
                blur.CompileJit(target);
                var output = blur.Realize <int>(256, 256);

                // Check the output is what we expected
                for (int yy = output.Top; yy <= output.Bottom; yy++)
                {
                    for (int xx = output.Left; xx <= output.Right; xx++)
                    {
                        int val      = output[xx, yy];
                        int expected = (input[xx - 1, yy - 1] + input[xx, yy - 1] + input[xx + 1, yy - 1] +
                                        input[xx - 1, yy] + input[xx, yy] + input[xx + 1, yy] +
                                        input[xx - 1, yy + 1] + input[xx, yy + 1] + input[xx + 1, yy + 1]);
                        if (val != expected)
                        {
                            Console.WriteLine($"output({xx}, {yy}) = {val} instead of {expected}\n",
                                              xx, yy, val, expected);
                            return(-1);
                        }
                    }
                }
            }

            {
                // Func::in can also be used to group multiple stages of a
                // Func into the same loop nest. Consider the following
                // pipeline, which computes a value per pixel, then sweeps
                // from left to right and back across each scanline.
                var f = new HSFunc("f_group");
                var g = new HSFunc("g_group");
                var h = new HSFunc("h_group");

                // Initialize f
                f[x, y] = HSMath.Sin(x - y);
                var r = new HSRDom(1, 7);

                // Sweep from left to right
                f[r, y] = (f[r, y] + f[r - 1, y]) / 2;

                // Sweep from right to left
                f[7 - r, y] = (f[7 - r, y] + f[8 - r, y]) / 2;

                // Then we do something with a complicated access pattern: A
                // 45 degree rotation with wrap-around
                g[x, y] = f[(x + y) % 8, (x - y) % 8];

                // f should be scheduled ComputeRoot, because its consumer
                // accesses it in a complicated way. But that means all stages
                // of f are computed in separate loop nests:

                // for y:
                //   for x:
                //     f(x, y) = sin(x - y)
                // for y:
                //   for r:
                //     f(r, y) = (f(r, y) + f(r - 1, y)) / 2
                // for y:
                //   for r:
                //     f(7 - r, y) = (f(7 - r, y) + f(8 - r, y)) / 2
                // for y:
                //   for x:
                //     g(x, y) = f((x + y) % 8, (x - y) % 8);

                // We can get better locality if we schedule the work done by
                // f to share a common loop over y. We can do this by
                // computing f at scanlines of a wrapper like so:

                f.In(g).ComputeRoot();
                f.ComputeAt(f.In(g), y);

                // f has the default schedule for a Func with update stages,
                // which is to be computed at the innermost loop of its
                // consumer, which is now the wrapper f.in(g). This therefore
                // generates the following loop nest, which has better
                // locality:

                // for y:
                //   for x:
                //     f(x, y) = sin(x - y)
                //   for r:
                //     f(r, y) = (f(r, y) + f(r - 1, y)) / 2
                //   for r:
                //     f(7 - r, y) = (f(7 - r, y) + f(8 - r, y)) / 2
                //   for x:
                //     f_in_g(x, y) = f(x, y)
                // for y:
                //   for x:
                //     g(x, y) = f_in_g((x + y) % 8, (x - y) % 8);

                // We'll additionally vectorize the initialization of, and
                // then transfer of pixel values from f into its wrapper:
                f.Vectorize(x, 4);
                f.In(g).Vectorize(x, 4);

                g.Realize <float>(8, 8);
                // See figures/lesson_19_group_updates.mp4 for a visualization.
            }

            Console.WriteLine("Success!");

            return(0);
        }
예제 #3
0
        public static int Main(string[] args)
        {
            // First we'll declare some Vars to use below.
            var x = new HSVar("x");
            var y = new HSVar("y");

            // Let's examine various scheduling options for a simple two stage
            // pipeline. We'll start with the default schedule:
            {
                var producer = new HSFunc("producer_default");
                var consumer = new HSFunc("consumer_default");

                // The first stage will be some simple pointwise math similar
                // to our familiar gradient function. The value at position x,
                // y is the sin of product of x and y.
                producer[x, y] = HSMath.Sin(x * y);

                // Now we'll add a second stage which averages together multiple
                // points in the first stage.
                consumer[x, y] = (producer[x, y] +
                                  producer[x, y + 1] +
                                  producer[x + 1, y] +
                                  producer[x + 1, y + 1]) / 4;

                // We'll turn on tracing for both functions.
                consumer.TraceStores();
                producer.TraceStores();

                // And evaluate it over a 4x4 box.
                Console.WriteLine("\nEvaluating producer-consumer pipeline with default schedule");
                consumer.Realize <float>(4, 4);

                // There were no messages about computing values of the
                // producer. This is because the default schedule fully
                // inlines 'producer' into 'consumer'. It is as if we had
                // written the following code instead:

                // consumer(x, y) = (sin(x * y) +
                //                   sin(x * (y + 1)) +
                //                   sin((x + 1) * y) +
                //                   sin((x + 1) * (y + 1))/4);

                // All calls to 'producer' have been replaced with the body of
                // 'producer', with the arguments substituted in for the
                // variables.

                // The equivalent C code is:
                var result = new float[4, 4];
                for (int yy = 0; yy < 4; yy++)
                {
                    for (int xx = 0; xx < 4; xx++)
                    {
                        result[yy, xx] = (float)((Math.Sin(xx * yy) +
                                                  Math.Sin(xx * (yy + 1)) +
                                                  Math.Sin((xx + 1) * yy) +
                                                  Math.Sin((xx + 1) * (yy + 1))) / 4);
                    }
                }
                Console.WriteLine();

                // If we look at the loop nest, the producer doesn't appear
                // at all. It has been inlined into the consumer.
                Console.WriteLine("Pseudo-code for the schedule:");
                consumer.PrintLoopNest();
                Console.WriteLine();
            }

            // Next we'll examine the next simplest option - computing all
            // values required in the producer before computing any of the
            // consumer. We call this schedule "root".
            {
                // Start with the same function definitions:
                var producer = new HSFunc("producer_root");
                var consumer = new HSFunc("consumer_root");
                producer[x, y] = HSMath.Sin(x * y);
                consumer[x, y] = (producer[x, y] +
                                  producer[x, y + 1] +
                                  producer[x + 1, y] +
                                  producer[x + 1, y + 1]) / 4;

                // Tell Halide to evaluate all of producer before any of consumer.
                producer.ComputeRoot();

                // Turn on tracing.
                consumer.TraceStores();
                producer.TraceStores();

                // Compile and run.
                Console.WriteLine("\nEvaluating producer.compute_root()");
                consumer.Realize <float>(4, 4);

                // Reading the output we can see that:
                // A) There were stores to producer.
                // B) They all happened before any stores to consumer.

                // See figures/lesson_08_compute_root.gif for a visualization.
                // The producer is on the left and the consumer is on the
                // right. Stores are marked in orange and loads are marked in
                // blue.

                // Equivalent C:

                var result = new float[4, 4];

                // Allocate some temporary storage for the producer.
                var producer_storage = new float[5, 5];

                // Compute the producer.
                for (int yy = 0; yy < 5; yy++)
                {
                    for (int xx = 0; xx < 5; xx++)
                    {
                        producer_storage[yy, xx] = (float)Math.Sin(xx * yy);
                    }
                }

                // Compute the consumer. Skip the prints this time.
                for (int yy = 0; yy < 4; yy++)
                {
                    for (int xx = 0; xx < 4; xx++)
                    {
                        result[yy, xx] = (producer_storage[yy, xx] +
                                          producer_storage[yy + 1, xx] +
                                          producer_storage[yy, xx + 1] +
                                          producer_storage[yy + 1, xx + 1]) / 4;
                    }
                }

                // Note that consumer was evaluated over a 4x4 box, so Halide
                // automatically inferred that producer was needed over a 5x5
                // box. This is the same 'bounds inference' logic we saw in
                // the previous lesson, where it was used to detect and avoid
                // out-of-bounds reads from an input image.

                // If we print the loop nest, we'll see something very
                // similar to the C above.
                Console.WriteLine("Pseudo-code for the schedule:");
                consumer.PrintLoopNest();
                Console.WriteLine();
            }

            // Let's compare the two approaches above from a performance
            // perspective.

            // Full inlining (the default schedule):
            // - Temporary memory allocated: 0
            // - Loads: 0
            // - Stores: 16
            // - Calls to sin: 64

            // producer.compute_root():
            // - Temporary memory allocated: 25 floats
            // - Loads: 64
            // - Stores: 41
            // - Calls to sin: 25

            // There's a trade-off here. Full inlining used minimal temporary
            // memory and memory bandwidth, but did a whole bunch of redundant
            // expensive math (calling sin). It evaluated most points in
            // 'producer' four times. The second schedule,
            // producer.compute_root(), did the mimimum number of calls to
            // sin, but used more temporary memory and more memory bandwidth.

            // In any given situation the correct choice can be difficult to
            // make. If you're memory-bandwidth limited, or don't have much
            // memory (e.g. because you're running on an old cell-phone), then
            // it can make sense to do redundant math. On the other hand, sin
            // is expensive, so if you're compute-limited then fewer calls to
            // sin will make your program faster. Adding vectorization or
            // multi-core parallelism tilts the scales in favor of doing
            // redundant work, because firing up multiple cpu cores increases
            // the amount of math you can do per second, but doesn't increase
            // your system memory bandwidth or capacity.

            // We can make choices in between full inlining and
            // compute_root. Next we'll alternate between computing the
            // producer and consumer on a per-scanline basis:
            {
                // Start with the same function definitions:
                var producer = new HSFunc("producer_y");
                var consumer = new HSFunc("consumer_y");
                producer[x, y] = HSMath.Sin(x * y);
                consumer[x, y] = (producer[x, y] +
                                  producer[x, y + 1] +
                                  producer[x + 1, y] +
                                  producer[x + 1, y + 1]) / 4;

                // Tell Halide to evaluate producer as needed per y coordinate
                // of the consumer:
                producer.ComputeAt(consumer, y);

                // This places the code that computes the producer just
                // *inside* the consumer's for loop over y, as in the
                // equivalent C below.

                // Turn on tracing.
                producer.TraceStores();
                consumer.TraceStores();

                // Compile and run.
                Console.WriteLine("\nEvaluating producer.ComputeAt(consumer, y)");
                consumer.Realize <float>(4, 4);

                // See figures/lesson_08_compute_y.gif for a visualization.

                // Reading the log or looking at the figure you should see
                // that producer and consumer alternate on a per-scanline
                // basis. Let's look at the equivalent C:

                var result = new float[4, 4];

                // There's an outer loop over scanlines of consumer:
                for (int yy = 0; yy < 4; yy++)
                {
                    // Allocate space and compute enough of the producer to
                    // satisfy this single scanline of the consumer. This
                    // means a 5x2 box of the producer.
                    var producer_storage = new float[2, 5];
                    for (int py = yy; py < yy + 2; py++)
                    {
                        for (int px = 0; px < 5; px++)
                        {
                            producer_storage[py - yy, px] = (float)Math.Sin(px * py);
                        }
                    }

                    // Compute a scanline of the consumer.
                    for (int xx = 0; xx < 4; xx++)
                    {
                        result[yy, xx] = (producer_storage[0, xx] +
                                          producer_storage[1, xx] +
                                          producer_storage[0, xx + 1] +
                                          producer_storage[1, xx + 1]) / 4;
                    }
                }

                // Again, if we print the loop nest, we'll see something very
                // similar to the C above.
                Console.WriteLine("Pseudo-code for the schedule:");
                consumer.PrintLoopNest();
                Console.WriteLine();

                // The performance characteristics of this strategy are in
                // between inlining and compute root. We still allocate some
                // temporary memory, but less that compute_root, and with
                // better locality (we load from it soon after writing to it,
                // so for larger images, values should still be in cache). We
                // still do some redundant work, but less than full inlining:

                // producer.ComputeAt(consumer, y):
                // - Temporary memory allocated: 10 floats
                // - Loads: 64
                // - Stores: 56
                // - Calls to sin: 40
            }

            // We could also say producer.ComputeAt(consumer, x), but this
            // would be very similar to full inlining (the default
            // schedule). Instead let's distinguish between the loop level at
            // which we allocate storage for producer, and the loop level at
            // which we actually compute it. This unlocks a few optimizations.
            {
                var producer = new HSFunc("producer_root_y");
                var consumer = new HSFunc("consumer_root_y");
                producer[x, y] = HSMath.Sin(x * y);
                consumer[x, y] = (producer[x, y] +
                                  producer[x, y + 1] +
                                  producer[x + 1, y] +
                                  producer[x + 1, y + 1]) / 4;


                // Tell Halide to make a buffer to store all of producer at
                // the outermost level:
                producer.StoreRoot();
                // ... but compute it as needed per y coordinate of the
                // consumer.
                producer.ComputeAt(consumer, y);

                producer.TraceStores();
                consumer.TraceStores();

                Console.WriteLine("\nEvaluating producer.store_root().ComputeAt(consumer, y)");
                consumer.Realize <float>(4, 4);

                // See figures/lesson_08_store_root_compute_y.gif for a
                // visualization.

                // Reading the log or looking at the figure you should see
                // that producer and consumer again alternate on a
                // per-scanline basis. It computes a 5x2 box of the producer
                // to satisfy the first scanline of the consumer, but after
                // that it only computes a 5x1 box of the output for each new
                // scanline of the consumer!
                //
                // Halide has detected that for all scanlines except for the
                // first, it can reuse the values already sitting in the
                // buffer we've allocated for producer. Let's look at the
                // equivalent C:

                var result = new float[4, 4];

                {
                    // producer.store_root() implies that storage goes here:
                    var producer_storage = new float[5, 5];

                    // There's an outer loop over scanlines of consumer:
                    for (int yy = 0; yy < 4; yy++)
                    {
                        // Compute enough of the producer to satisfy this scanline
                        // of the consumer.
                        for (int py = yy; py < yy + 2; py++)
                        {
                            // Skip over rows of producer that we've already
                            // computed in a previous iteration.
                            if (yy > 0 && py == yy)
                            {
                                continue;
                            }

                            for (int px = 0; px < 5; px++)
                            {
                                producer_storage[py, px] = (float)Math.Sin(px * py);
                            }
                        }

                        // Compute a scanline of the consumer.
                        for (int xx = 0; xx < 4; xx++)
                        {
                            result[yy, xx] = (producer_storage[yy, xx] +
                                              producer_storage[yy + 1, xx] +
                                              producer_storage[yy, xx + 1] +
                                              producer_storage[yy + 1, xx + 1]) / 4;
                        }
                    }
                }

                Console.WriteLine("Pseudo-code for the schedule:");
                consumer.PrintLoopNest();
                Console.WriteLine();

                // The performance characteristics of this strategy are pretty
                // good! The numbers are similar compute_root, except locality
                // is better. We're doing the minimum number of sin calls,
                // and we load values soon after they are stored, so we're
                // probably making good use of the cache:

                // producer.store_root().ComputeAt(consumer, y):
                // - Temporary memory allocated: 10 floats
                // - Loads: 64
                // - Stores: 39
                // - Calls to sin: 25

                // Note that my claimed amount of memory allocated doesn't
                // match the reference C code. Halide is performing one more
                // optimization under the hood. It folds the storage for the
                // producer down into a circular buffer of two
                // scanlines. Equivalent C would actually look like this:

                {
                    // Actually store 2 scanlines instead of 5
                    var producer_storage = new float[2, 5];
                    for (int yy = 0; yy < 4; yy++)
                    {
                        for (int py = yy; py < yy + 2; py++)
                        {
                            if (yy > 0 && py == yy)
                            {
                                continue;
                            }
                            for (int px = 0; px < 5; px++)
                            {
                                // Stores to producer_storage have their y coordinate bit-masked.
                                producer_storage[py & 1, px] = (float)Math.Sin(px * py);
                            }
                        }

                        // Compute a scanline of the consumer.
                        for (int xx = 0; xx < 4; xx++)
                        {
                            // Loads from producer_storage have their y coordinate bit-masked.
                            result[yy, xx] = (producer_storage[yy & 1, xx] +
                                              producer_storage[(yy + 1) & 1, xx] +
                                              producer_storage[yy & 1, xx + 1] +
                                              producer_storage[(yy + 1) & 1, xx + 1]) / 4;
                        }
                    }
                }
            }

            // We can do even better, by leaving the storage outermost, but
            // moving the computation into the innermost loop:
            {
                var producer = new HSFunc("producer_root_x");
                var consumer = new HSFunc("consumer_root_x");
                producer[x, y] = HSMath.Sin(x * y);
                consumer[x, y] = (producer[x, y] +
                                  producer[x, y + 1] +
                                  producer[x + 1, y] +
                                  producer[x + 1, y + 1]) / 4;


                // Store outermost, compute innermost.
                producer.StoreRoot().ComputeAt(consumer, x);

                producer.TraceStores();
                consumer.TraceStores();

                Console.WriteLine("\nEvaluating producer.store_root().ComputeAt(consumer, x)");
                consumer.Realize <float>(4, 4);

                // See figures/lesson_08_store_root_compute_x.gif for a
                // visualization.

                // You should see that producer and consumer now alternate on
                // a per-pixel basis. Here's the equivalent C:

                var result = new float[4, 4];

                // producer.store_root() implies that storage goes here, but
                // we can fold it down into a circular buffer of two
                // scanlines:
                var producer_storage = new float[2, 5];

                // For every pixel of the consumer:
                for (int yy = 0; yy < 4; yy++)
                {
                    for (int xx = 0; xx < 4; xx++)
                    {
                        // Compute enough of the producer to satisfy this
                        // pixel of the consumer, but skip values that we've
                        // already computed:
                        if (yy == 0 && xx == 0)
                        {
                            producer_storage[yy & 1, xx] = (float)Math.Sin(xx * yy);
                        }
                        if (yy == 0)
                        {
                            producer_storage[yy & 1, xx + 1] = (float)Math.Sin((xx + 1) * yy);
                        }
                        if (xx == 0)
                        {
                            producer_storage[(yy + 1) & 1, xx] = (float)Math.Sin(xx * (yy + 1));
                        }
                        producer_storage[(yy + 1) & 1, xx + 1] = (float)Math.Sin((xx + 1) * (yy + 1));

                        result[yy, xx] = (producer_storage[yy & 1, xx] +
                                          producer_storage[(yy + 1) & 1, xx] +
                                          producer_storage[yy & 1, xx + 1] +
                                          producer_storage[(yy + 1) & 1, xx + 1]) / 4;
                    }
                }

                Console.WriteLine("Pseudo-code for the schedule:");
                consumer.PrintLoopNest();
                Console.WriteLine();

                // The performance characteristics of this strategy are the
                // best so far. One of the four values of the producer we need
                // is probably still sitting in a register, so I won't count
                // it as a load:
                // producer.store_root().ComputeAt(consumer, x):
                // - Temporary memory allocated: 10 floats
                // - Loads: 48
                // - Stores: 56
                // - Calls to sin: 40
            }

            // So what's the catch? Why not always do
            // producer.store_root().ComputeAt(consumer, x) for this type of
            // code?
            //
            // The answer is parallelism. In both of the previous two
            // strategies we've assumed that values computed on previous
            // iterations are lying around for us to reuse. This assumes that
            // previous values of x or y happened earlier in time and have
            // finished. This is not true if you parallelize or vectorize
            // either loop. Darn. If you parallelize, Halide won't inject the
            // optimizations that skip work already done if there's a parallel
            // loop in between the store_at level and the ComputeAt level,
            // and won't fold the storage down into a circular buffer either,
            // which makes our store_root pointless.

            // We're running out of options. We can make new ones by
            // splitting. We can store_at or ComputeAt at the natural
            // variables of the consumer (x and y), or we can split x or y
            // into new inner and outer sub-variables and then schedule with
            // respect to those. We'll use this to express fusion in tiles:
            {
                var producer = new HSFunc("producer_tile");
                var consumer = new HSFunc("consumer_tile");
                producer[x, y] = HSMath.Sin(x * y);
                consumer[x, y] = (producer[x, y] +
                                  producer[x, y + 1] +
                                  producer[x + 1, y] +
                                  producer[x + 1, y + 1]) / 4;

                // We'll compute 8x8 of the consumer, in 4x4 tiles.
                var x_outer = new HSVar("x_outer");
                var y_outer = new HSVar("y_outer");
                var x_inner = new HSVar("x_inner");
                var y_inner = new HSVar("y_inner");
                consumer.Tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);

                // Compute the producer per tile of the consumer
                producer.ComputeAt(consumer, x_outer);

                // Notice that I wrote my schedule starting from the end of
                // the pipeline (the consumer). This is because the schedule
                // for the producer refers to x_outer, which we introduced
                // when we tiled the consumer. You can write it in the other
                // order, but it tends to be harder to read.

                // Turn on tracing.
                producer.TraceStores();
                consumer.TraceStores();

                Console.WriteLine("\nEvaluating:");
                Console.WriteLine("consumer.tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);");
                Console.WriteLine("producer.ComputeAt(consumer, x_outer);");
                consumer.Realize <float>(8, 8);

                // See figures/lesson_08_tile.gif for a visualization.

                // The producer and consumer now alternate on a per-tile
                // basis. Here's the equivalent C:

                var result = new float[8, 8];

                // For every tile of the consumer:
                for (int yy_outer = 0; yy_outer < 2; yy_outer++)
                {
                    for (int xx_outer = 0; xx_outer < 2; xx_outer++)
                    {
                        // Compute the x and y coords of the start of this tile.
                        int x_base = xx_outer * 4;
                        int y_base = yy_outer * 4;

                        // Compute enough of producer to satisfy this tile. A
                        // 4x4 tile of the consumer requires a 5x5 tile of the
                        // producer.
                        var producer_storage = new float[5, 5];
                        for (int py = y_base; py < y_base + 5; py++)
                        {
                            for (int px = x_base; px < x_base + 5; px++)
                            {
                                producer_storage[py - y_base, px - x_base] = (float)Math.Sin(px * py);
                            }
                        }

                        // Compute this tile of the consumer
                        for (int yy_inner = 0; yy_inner < 4; yy_inner++)
                        {
                            for (int xx_inner = 0; xx_inner < 4; xx_inner++)
                            {
                                int xx = x_base + xx_inner;
                                int yy = y_base + yy_inner;
                                result[yy, xx] =
                                    (producer_storage[yy - y_base, xx - x_base] +
                                     producer_storage[yy - y_base + 1, xx - x_base] +
                                     producer_storage[yy - y_base, xx - x_base + 1] +
                                     producer_storage[yy - y_base + 1, xx - x_base + 1]) / 4;
                            }
                        }
                    }
                }

                Console.WriteLine("Pseudo-code for the schedule:");
                consumer.PrintLoopNest();
                Console.WriteLine();

                // Tiling can make sense for problems like this one with
                // stencils that reach outwards in x and y. Each tile can be
                // computed independently in parallel, and the redundant work
                // done by each tile isn't so bad once the tiles get large
                // enough.
            }

            // Let's try a mixed strategy that combines what we have done with
            // splitting, parallelizing, and vectorizing. This is one that
            // often works well in practice for large images. If you
            // understand this schedule, then you understand 95% of scheduling
            // in Halide.
            {
                var producer = new HSFunc("producer_mixed");
                var consumer = new HSFunc("consumer_mixed");
                producer[x, y] = HSMath.Sin(x * y);
                consumer[x, y] = (producer[x, y] +
                                  producer[x, y + 1] +
                                  producer[x + 1, y] +
                                  producer[x + 1, y + 1]) / 4;

                // Split the y coordinate of the consumer into strips of 16 scanlines:
                var yo = new HSVar("yo");
                var yi = new HSVar("yi");
                consumer.Split(y, yo, yi, 16);
                // Compute the strips using a thread pool and a task queue.
                consumer.Parallel(yo);
                // Vectorize across x by a factor of four.
                consumer.Vectorize(x, 4);

                // Now store the producer per-strip. This will be 17 scanlines
                // of the producer (16+1), but hopefully it will fold down
                // into a circular buffer of two scanlines:
                producer.StoreAt(consumer, yo);
                // Within each strip, compute the producer per scanline of the
                // consumer, skipping work done on previous scanlines.
                producer.ComputeAt(consumer, yi);
                // Also vectorize the producer (because sin is vectorizable on x86 using SSE).
                producer.Vectorize(x, 4);

                // Let's leave tracing off this time, because we're going to
                // evaluate over a larger image.
                // consumer.TraceStores();
                // producer.TraceStores();

                var halide_result = consumer.Realize <float>(160, 160);

                // See figures/lesson_08_mixed.mp4 for a visualization.

                // Here's the equivalent (serial) C:

                var c_result = new float[160, 160];

                // For every strip of 16 scanlines (this loop is parallel in
                // the Halide version)
                for (int yyo = 0; yyo < 160 / 16 + 1; yyo++)
                {
                    // 16 doesn't divide 160, so push the last slice upwards
                    // to fit within [0, 159] (see lesson 05).
                    int y_base = yyo * 16;
                    if (y_base > 160 - 16)
                    {
                        y_base = 160 - 16;
                    }

                    // Allocate a two-scanline circular buffer for the producer
                    var producer_storage = new float[2, 161];

                    // For every scanline in the strip of 16:
                    for (int yyi = 0; yyi < 16; yyi++)
                    {
                        int yy = y_base + yyi;

                        for (int py = yy; py < yy + 2; py++)
                        {
                            // Skip scanlines already computed *within this task*
                            if (yyi > 0 && py == yy)
                            {
                                continue;
                            }

                            // Compute this scanline of the producer in 4-wide vectors
                            for (int x_vec = 0; x_vec < 160 / 4 + 1; x_vec++)
                            {
                                int x_base = x_vec * 4;
                                // 4 doesn't divide 161, so push the last vector left
                                // (see lesson 05).
                                if (x_base > 161 - 4)
                                {
                                    x_base = 161 - 4;
                                }
                                // If you're on x86, Halide generates SSE code for this part:
                                int[]   xx  = { x_base, x_base + 1, x_base + 2, x_base + 3 };
                                float[] vec = { (float)Math.Sin(xx[0] * py), (float)Math.Sin(xx[1] * py),
                                                (float)Math.Sin(xx[2] * py), (float)Math.Sin(xx[3] * py) };
                                producer_storage[py & 1, xx[0]] = vec[0];
                                producer_storage[py & 1, xx[1]] = vec[1];
                                producer_storage[py & 1, xx[2]] = vec[2];
                                producer_storage[py & 1, xx[3]] = vec[3];
                            }
                        }

                        // Now compute consumer for this scanline:
                        for (int x_vec = 0; x_vec < 160 / 4; x_vec++)
                        {
                            int x_base = x_vec * 4;
                            // Again, Halide's equivalent here uses SSE.
                            int[]   xx  = { x_base, x_base + 1, x_base + 2, x_base + 3 };
                            float[] vec =
                            {
                                (producer_storage[yy & 1, xx[0]] +
                                 producer_storage[(yy + 1) & 1, xx[0]] +
                                 producer_storage[yy & 1, xx[0] + 1] +
                                 producer_storage[(yy + 1) & 1, xx[0] + 1]) / 4,
                                (producer_storage[yy & 1, xx[1]] +
                                 producer_storage[(yy + 1) & 1, xx[1]] +
                                 producer_storage[yy & 1, xx[1] + 1] +
                                 producer_storage[(yy + 1) & 1, xx[1] + 1]) / 4,
                                (producer_storage[yy & 1, xx[2]] +
                                 producer_storage[(yy + 1) & 1, xx[2]] +
                                 producer_storage[yy & 1, xx[2] + 1] +
                                 producer_storage[(yy + 1) & 1, xx[2] + 1]) / 4,
                                (producer_storage[yy & 1, xx[3]] +
                                 producer_storage[(yy + 1) & 1, xx[3]] +
                                 producer_storage[yy & 1, xx[3] + 1] +
                                 producer_storage[(yy + 1) & 1, xx[3] + 1]) / 4
                            };

                            c_result[yy, xx[0]] = vec[0];
                            c_result[yy, xx[1]] = vec[1];
                            c_result[yy, xx[2]] = vec[2];
                            c_result[yy, xx[3]] = vec[3];
                        }
                    }
                }
                Console.WriteLine("Pseudo-code for the schedule:");
                consumer.PrintLoopNest();
                Console.WriteLine();

                // Look on my code, ye mighty, and despair!

                // Let's check the C result against the Halide result. Doing
                // this I found several bugs in my C implementation, which
                // should tell you something.
                for (int yy = 0; yy < 160; yy++)
                {
                    for (int xx = 0; xx < 160; xx++)
                    {
                        float error = halide_result[xx, yy] - c_result[yy, xx];
                        // It's floating-point math, so we'll allow some slop:
                        if (error < -0.001f || error > 0.001f)
                        {
                            Console.WriteLine("halide_result(%d, %d) = %f instead of %f",
                                              xx, yy, halide_result[xx, yy], c_result[yy, xx]);
                            return(-1);
                        }
                    }
                }
            }

            // This stuff is hard. We ended up in a three-way trade-off
            // between memory bandwidth, redundant work, and
            // parallelism. Halide can't make the correct choice for you
            // automatically (sorry). Instead it tries to make it easier for
            // you to explore various options, without messing up your
            // program. In fact, Halide promises that scheduling calls like
            // compute_root won't change the meaning of your algorithm -- you
            // should get the same bits back no matter how you schedule
            // things.

            // So be empirical! Experiment with various schedules and keep a
            // log of performance. Form hypotheses and then try to prove
            // yourself wrong. Don't assume that you just need to vectorize
            // your code by a factor of four and run it on eight cores and
            // you'll get 32x faster. This almost never works. Modern systems
            // are complex enough that you can't predict performance reliably
            // without running your code.

            // We suggest you start by scheduling all of your non-trivial
            // stages compute_root, and then work from the end of the pipeline
            // upwards, inlining, parallelizing, and vectorizing each stage in
            // turn until you reach the top.

            // Halide is not just about vectorizing and parallelizing your
            // code. That's not enough to get you very far. Halide is about
            // giving you tools that help you quickly explore different
            // trade-offs between locality, redundant work, and parallelism,
            // without messing up the actual result you're trying to compute.

            Console.WriteLine("Success!");
            return(0);
        }