// Now we define methods that give our pipeline several different // schedules. public void ScheduleForCpu() { // Compute the look-up-table ahead of time. Lut.ComputeRoot(); // Compute color channels innermost. Promise that there will // be three of them and unroll across them. Curved.Reorder(C, X, Y) .Bound(C, 0, 3) .Unroll(C); // Look-up-tables don't vectorize well, so just parallelize // curved in slices of 16 scanlines. var yo = new HSVar("yo"); var yi = new HSVar("yi"); Curved.Split(Y, yo, yi, 16) .Parallel(yo); // Compute sharpen as needed per scanline of curved. Sharpen.ComputeAt(Curved, yi); // Vectorize the sharpen. It's 16-bit so we'll vectorize it 8-wide. Sharpen.Vectorize(X, 8); // Compute the padded input as needed per scanline of curved, // reusing previous values computed within the same strip of // 16 scanlines. Padded.StoreAt(Curved, yo) .ComputeAt(Curved, yi); // Also vectorize the padding. It's 8-bit, so we'll vectorize // 16-wide. Padded.Vectorize(X, 16); // JIT-compile the pipeline for the CPU. Curved.CompileJit(); }
public static int Main(string[] args) { // First we'll declare some Vars to use below. var x = new HSVar("x"); var y = new HSVar("y"); var xo = new HSVar("xo"); var yo = new HSVar("yo"); var xi = new HSVar("xi"); var yi = new HSVar("yi"); // This lesson will be about "wrapping" a Func or an ImageParam using the // Func::in and ImageParam::in directives { { // Consider a simple two-stage pipeline: var f = new HSFunc("f_local"); var g = new HSFunc("g_local"); f[x, y] = x + y; g[x, y] = 2 * f[x, y] + 3; f.ComputeRoot(); // This produces the following loop nests: // for y: // for x: // f(x, y) = x + y // for y: // for x: // g(x, y) = 2 * f(x, y) + 3 // Using Func::in, we can interpose a new Func in between f // and g using the schedule alone: HSFunc f_in_g = f.In(g); f_in_g.ComputeRoot(); // Equivalently, we could also chain the schedules like so: // f.in(g).ComputeRoot(); // This produces the following three loop nests: // for y: // for x: // f(x, y) = x + y // for y: // for x: // f_in_g(x, y) = f(x, y) // for y: // for x: // g(x, y) = 2 * f_in_g(x, y) + 3 g.Realize <int>(5, 5); // See figures/lesson_19_wrapper_local.mp4 for a visualization. } // The schedule directive f.in(g) replaces all calls to 'f' // inside 'g' with a wrapper Func and then returns that // wrapper. Essentially, it rewrites the original pipeline // above into the following: { var f_in_g = new HSFunc("f_in_g"); var f = new HSFunc("f"); var g = new HSFunc("g"); f[x, y] = x + y; f_in_g[x, y] = f[x, y]; g[x, y] = 2 * f_in_g[x, y] + 3; f.ComputeRoot(); f_in_g.ComputeRoot(); g.ComputeRoot(); } // In isolation, such a transformation seems pointless, but it // can be used for a variety of scheduling tricks. } { // In the schedule above, only the calls to 'f' made by 'g' // are replaced. Other calls made to f would still call 'f' // directly. If we wish to globally replace all calls to 'f' // with a single wrapper, we simply say f.in(). // Consider a three stage pipeline, with two consumers of f: var f = new HSFunc("f_global"); var g = new HSFunc("g_global"); var h = new HSFunc("h_global"); f[x, y] = x + y; g[x, y] = 2 * f[x, y]; h[x, y] = 3 + g[x, y] - f[x, y]; f.ComputeRoot(); g.ComputeRoot(); h.ComputeRoot(); // We will replace all calls to 'f' inside both 'g' and 'h' // with calls to a single wrapper: f.In().ComputeRoot(); // The equivalent loop nests are: // for y: // for x: // f(x, y) = x + y // for y: // for x: // f_in(x, y) = f(x, y) // for y: // for x: // g(x, y) = 2 * f_in(x, y) // for y: // for x: // h(x, y) = 3 + g(x, y) - f_in(x, y) h.Realize <int>(5, 5); // See figures/lesson_19_wrapper_global.mp4 and for a // visualization of what this did. } { // We could also give g and h their own unique wrappers of // f. This time we'll schedule them each inside the loop nests // of the consumer, which is not something we could do with a // single global wrapper. var f = new HSFunc("f_unique"); var g = new HSFunc("g_unique"); var h = new HSFunc("h_unique"); f[x, y] = x + y; g[x, y] = 2 * f[x, y]; h[x, y] = 3 + g[x, y] - f[x, y]; f.ComputeRoot(); g.ComputeRoot(); h.ComputeRoot(); f.In(g).ComputeAt(g, y); f.In(h).ComputeAt(h, y); // This creates the loop nests: // for y: // for x: // f(x, y) = x + y // for y: // for x: // f_in_g(x, y) = f(x, y) // for x: // g(x, y) = 2 * f_in_g(x, y) // for y: // for x: // f_in_h(x, y) = f(x, y) // for x: // h(x, y) = 3 + g(x, y) - f_in_h(x, y) h.Realize <int>(5, 5); // See figures/lesson_19_wrapper_unique.mp4 for a visualization. } { // So far this may seem like a lot of pointless copying of // memory. Func::in can be combined with other scheduling // directives for a variety of purposes. The first we will // examine is creating distinct realizations of a Func for // several consumers and scheduling each differently. // We'll start with nearly the same pipeline. var f = new HSFunc("f_sched"); var g = new HSFunc("g_sched"); var h = new HSFunc("h_sched"); f[x, y] = x + y; g[x, y] = 2 * f[x, y]; // h will use a far-away region of f h[x, y] = 3 + g[x, y] - f[x + 93, y - 87]; // This time we'll inline f. // f.ComputeRoot(); g.ComputeRoot(); h.ComputeRoot(); f.In(g).ComputeAt(g, y); f.In(h).ComputeAt(h, y); // g and h now call f via distinct wrappers. The wrappers are // scheduled, but f is not, which means that f is inlined into // its two wrappers. They will each independently compute the // region of f required by their consumer. If we had scheduled // f ComputeRoot, we'd be computing the bounding box of the // region required by g and the region required by h, which // would mostly be unused data. // We can also schedule each of these wrappers // differently. For scheduling purposes, wrappers inherit the // pure vars of the Func they wrap, so we use the same x and y // that we used when defining f: f.In(g).Vectorize(x, 4); f.In(h).Split(x, xo, xi, 2).Reorder(xo, xi); // Note that calling f.in(g) a second time returns the wrapper // already created by the first call, it doesn't make a new one. h.Realize <int>(8, 8); // See figures/lesson_19_wrapper_vary_schedule.mp4 for a // visualization. // Note that because f is inlined into its two wrappers, it is // the wrappers that do the work of computing f, rather than // just loading from an existing computed realization. } { // Func::in is useful to stage loads from a Func via some // smaller intermediate buffer, perhaps on the stack or in // shared GPU memory. // Consider a pipeline that transposes some ComputeRoot'd Func: var f = new HSFunc("f_transpose"); var g = new HSFunc("g_transpose"); f[x, y] = HSMath.Sin(((x + y) * HSMath.Sqrt(y)) / 10); f.ComputeRoot(); g[x, y] = f[y, x]; // The execution strategy we want is to load an 4x4 tile of f // into registers, transpose it in-register, and then write it // out as an 4x4 tile of g. We will use Func::in to express this: HSFunc f_tile = f.In(g); // We now have a three stage pipeline: // f -> f_tile -> g // f_tile will load vectors of f, and store them transposed // into registers. g will then write this data back to main // memory. g.Tile(x, y, xo, yo, xi, yi, 4, 4) .Vectorize(xi) .Unroll(yi); // We will compute f_transpose at tiles of g, and use // Func::reorder_storage to state that f_transpose should be // stored column-major, so that the loads to it done by g can // be dense vector loads. f_tile.ComputeAt(g, xo) .ReorderStorage(y, x) .Vectorize(x) .Unroll(y); // We take care to make sure f_transpose is only ever accessed // at constant indicies. The full unrolling/vectorization of // all loops that exist inside its compute_at level has this // effect. Allocations that are only ever accessed at constant // indices can be promoted into registers. g.Realize <float>(16, 16); // See figures/lesson_19_transpose.mp4 for a visualization } { // ImageParam::in behaves the same way as Func::in, and you // can use it to stage loads in similar ways. Instead of // transposing again, we'll use ImageParam::in to stage tiles // of an input image into GPU shared memory, effectively using // shared/local memory as an explicitly-managed cache. var img = new HSImageParam <int>(2); // We will compute a small blur of the input. var blur = new HSFunc("blur"); blur[x, y] = (img[x - 1, y - 1] + img[x, y - 1] + img[x + 1, y - 1] + img[x - 1, y] + img[x, y] + img[x + 1, y] + img[x - 1, y + 1] + img[x, y + 1] + img[x + 1, y + 1]); blur.ComputeRoot().GpuTile(x, y, xo, yo, xi, yi, 8, 8); // The wrapper Func created by ImageParam::in has pure vars // named _0, _1, etc. Schedule it per tile of "blur", and map // _0 and _1 to gpu threads. img.In(blur).ComputeAt(blur, xo).GpuThreads(HS._0, HS._1); // Without Func::in, computing an 8x8 tile of blur would do // 8*8*9 loads to global memory. With Func::in, the wrapper // does 10*10 loads to global memory up front, and then blur // does 8*8*9 loads to shared/local memory. // Select an appropriate GPU API, as we did in lesson 12 var target = HS.GetHostTarget(); if (target.OS == HSOperatingSystem.OSX) { target.SetFeature(HSFeature.Metal); } else { target.SetFeature(HSFeature.OpenCL); } // Create an interesting input image to use. var input = new HSBuffer <int>(258, 258); input.SetMin(-1, -1); for (int yy = input.Top; yy <= input.Bottom; yy++) { for (int xx = input.Left; xx <= input.Right; xx++) { input[xx, yy] = xx * 17 + yy % 4; } } img.Set(input); blur.CompileJit(target); var output = blur.Realize <int>(256, 256); // Check the output is what we expected for (int yy = output.Top; yy <= output.Bottom; yy++) { for (int xx = output.Left; xx <= output.Right; xx++) { int val = output[xx, yy]; int expected = (input[xx - 1, yy - 1] + input[xx, yy - 1] + input[xx + 1, yy - 1] + input[xx - 1, yy] + input[xx, yy] + input[xx + 1, yy] + input[xx - 1, yy + 1] + input[xx, yy + 1] + input[xx + 1, yy + 1]); if (val != expected) { Console.WriteLine($"output({xx}, {yy}) = {val} instead of {expected}\n", xx, yy, val, expected); return(-1); } } } } { // Func::in can also be used to group multiple stages of a // Func into the same loop nest. Consider the following // pipeline, which computes a value per pixel, then sweeps // from left to right and back across each scanline. var f = new HSFunc("f_group"); var g = new HSFunc("g_group"); var h = new HSFunc("h_group"); // Initialize f f[x, y] = HSMath.Sin(x - y); var r = new HSRDom(1, 7); // Sweep from left to right f[r, y] = (f[r, y] + f[r - 1, y]) / 2; // Sweep from right to left f[7 - r, y] = (f[7 - r, y] + f[8 - r, y]) / 2; // Then we do something with a complicated access pattern: A // 45 degree rotation with wrap-around g[x, y] = f[(x + y) % 8, (x - y) % 8]; // f should be scheduled ComputeRoot, because its consumer // accesses it in a complicated way. But that means all stages // of f are computed in separate loop nests: // for y: // for x: // f(x, y) = sin(x - y) // for y: // for r: // f(r, y) = (f(r, y) + f(r - 1, y)) / 2 // for y: // for r: // f(7 - r, y) = (f(7 - r, y) + f(8 - r, y)) / 2 // for y: // for x: // g(x, y) = f((x + y) % 8, (x - y) % 8); // We can get better locality if we schedule the work done by // f to share a common loop over y. We can do this by // computing f at scanlines of a wrapper like so: f.In(g).ComputeRoot(); f.ComputeAt(f.In(g), y); // f has the default schedule for a Func with update stages, // which is to be computed at the innermost loop of its // consumer, which is now the wrapper f.in(g). This therefore // generates the following loop nest, which has better // locality: // for y: // for x: // f(x, y) = sin(x - y) // for r: // f(r, y) = (f(r, y) + f(r - 1, y)) / 2 // for r: // f(7 - r, y) = (f(7 - r, y) + f(8 - r, y)) / 2 // for x: // f_in_g(x, y) = f(x, y) // for y: // for x: // g(x, y) = f_in_g((x + y) % 8, (x - y) % 8); // We'll additionally vectorize the initialization of, and // then transfer of pixel values from f into its wrapper: f.Vectorize(x, 4); f.In(g).Vectorize(x, 4); g.Realize <float>(8, 8); // See figures/lesson_19_group_updates.mp4 for a visualization. } Console.WriteLine("Success!"); return(0); }
public static int Main(string[] args) { // First we'll declare some Vars to use below. var x = new HSVar("x"); var y = new HSVar("y"); // Let's examine various scheduling options for a simple two stage // pipeline. We'll start with the default schedule: { var producer = new HSFunc("producer_default"); var consumer = new HSFunc("consumer_default"); // The first stage will be some simple pointwise math similar // to our familiar gradient function. The value at position x, // y is the sin of product of x and y. producer[x, y] = HSMath.Sin(x * y); // Now we'll add a second stage which averages together multiple // points in the first stage. consumer[x, y] = (producer[x, y] + producer[x, y + 1] + producer[x + 1, y] + producer[x + 1, y + 1]) / 4; // We'll turn on tracing for both functions. consumer.TraceStores(); producer.TraceStores(); // And evaluate it over a 4x4 box. Console.WriteLine("\nEvaluating producer-consumer pipeline with default schedule"); consumer.Realize <float>(4, 4); // There were no messages about computing values of the // producer. This is because the default schedule fully // inlines 'producer' into 'consumer'. It is as if we had // written the following code instead: // consumer(x, y) = (sin(x * y) + // sin(x * (y + 1)) + // sin((x + 1) * y) + // sin((x + 1) * (y + 1))/4); // All calls to 'producer' have been replaced with the body of // 'producer', with the arguments substituted in for the // variables. // The equivalent C code is: var result = new float[4, 4]; for (int yy = 0; yy < 4; yy++) { for (int xx = 0; xx < 4; xx++) { result[yy, xx] = (float)((Math.Sin(xx * yy) + Math.Sin(xx * (yy + 1)) + Math.Sin((xx + 1) * yy) + Math.Sin((xx + 1) * (yy + 1))) / 4); } } Console.WriteLine(); // If we look at the loop nest, the producer doesn't appear // at all. It has been inlined into the consumer. Console.WriteLine("Pseudo-code for the schedule:"); consumer.PrintLoopNest(); Console.WriteLine(); } // Next we'll examine the next simplest option - computing all // values required in the producer before computing any of the // consumer. We call this schedule "root". { // Start with the same function definitions: var producer = new HSFunc("producer_root"); var consumer = new HSFunc("consumer_root"); producer[x, y] = HSMath.Sin(x * y); consumer[x, y] = (producer[x, y] + producer[x, y + 1] + producer[x + 1, y] + producer[x + 1, y + 1]) / 4; // Tell Halide to evaluate all of producer before any of consumer. producer.ComputeRoot(); // Turn on tracing. consumer.TraceStores(); producer.TraceStores(); // Compile and run. Console.WriteLine("\nEvaluating producer.compute_root()"); consumer.Realize <float>(4, 4); // Reading the output we can see that: // A) There were stores to producer. // B) They all happened before any stores to consumer. // See figures/lesson_08_compute_root.gif for a visualization. // The producer is on the left and the consumer is on the // right. Stores are marked in orange and loads are marked in // blue. // Equivalent C: var result = new float[4, 4]; // Allocate some temporary storage for the producer. var producer_storage = new float[5, 5]; // Compute the producer. for (int yy = 0; yy < 5; yy++) { for (int xx = 0; xx < 5; xx++) { producer_storage[yy, xx] = (float)Math.Sin(xx * yy); } } // Compute the consumer. Skip the prints this time. for (int yy = 0; yy < 4; yy++) { for (int xx = 0; xx < 4; xx++) { result[yy, xx] = (producer_storage[yy, xx] + producer_storage[yy + 1, xx] + producer_storage[yy, xx + 1] + producer_storage[yy + 1, xx + 1]) / 4; } } // Note that consumer was evaluated over a 4x4 box, so Halide // automatically inferred that producer was needed over a 5x5 // box. This is the same 'bounds inference' logic we saw in // the previous lesson, where it was used to detect and avoid // out-of-bounds reads from an input image. // If we print the loop nest, we'll see something very // similar to the C above. Console.WriteLine("Pseudo-code for the schedule:"); consumer.PrintLoopNest(); Console.WriteLine(); } // Let's compare the two approaches above from a performance // perspective. // Full inlining (the default schedule): // - Temporary memory allocated: 0 // - Loads: 0 // - Stores: 16 // - Calls to sin: 64 // producer.compute_root(): // - Temporary memory allocated: 25 floats // - Loads: 64 // - Stores: 41 // - Calls to sin: 25 // There's a trade-off here. Full inlining used minimal temporary // memory and memory bandwidth, but did a whole bunch of redundant // expensive math (calling sin). It evaluated most points in // 'producer' four times. The second schedule, // producer.compute_root(), did the mimimum number of calls to // sin, but used more temporary memory and more memory bandwidth. // In any given situation the correct choice can be difficult to // make. If you're memory-bandwidth limited, or don't have much // memory (e.g. because you're running on an old cell-phone), then // it can make sense to do redundant math. On the other hand, sin // is expensive, so if you're compute-limited then fewer calls to // sin will make your program faster. Adding vectorization or // multi-core parallelism tilts the scales in favor of doing // redundant work, because firing up multiple cpu cores increases // the amount of math you can do per second, but doesn't increase // your system memory bandwidth or capacity. // We can make choices in between full inlining and // compute_root. Next we'll alternate between computing the // producer and consumer on a per-scanline basis: { // Start with the same function definitions: var producer = new HSFunc("producer_y"); var consumer = new HSFunc("consumer_y"); producer[x, y] = HSMath.Sin(x * y); consumer[x, y] = (producer[x, y] + producer[x, y + 1] + producer[x + 1, y] + producer[x + 1, y + 1]) / 4; // Tell Halide to evaluate producer as needed per y coordinate // of the consumer: producer.ComputeAt(consumer, y); // This places the code that computes the producer just // *inside* the consumer's for loop over y, as in the // equivalent C below. // Turn on tracing. producer.TraceStores(); consumer.TraceStores(); // Compile and run. Console.WriteLine("\nEvaluating producer.ComputeAt(consumer, y)"); consumer.Realize <float>(4, 4); // See figures/lesson_08_compute_y.gif for a visualization. // Reading the log or looking at the figure you should see // that producer and consumer alternate on a per-scanline // basis. Let's look at the equivalent C: var result = new float[4, 4]; // There's an outer loop over scanlines of consumer: for (int yy = 0; yy < 4; yy++) { // Allocate space and compute enough of the producer to // satisfy this single scanline of the consumer. This // means a 5x2 box of the producer. var producer_storage = new float[2, 5]; for (int py = yy; py < yy + 2; py++) { for (int px = 0; px < 5; px++) { producer_storage[py - yy, px] = (float)Math.Sin(px * py); } } // Compute a scanline of the consumer. for (int xx = 0; xx < 4; xx++) { result[yy, xx] = (producer_storage[0, xx] + producer_storage[1, xx] + producer_storage[0, xx + 1] + producer_storage[1, xx + 1]) / 4; } } // Again, if we print the loop nest, we'll see something very // similar to the C above. Console.WriteLine("Pseudo-code for the schedule:"); consumer.PrintLoopNest(); Console.WriteLine(); // The performance characteristics of this strategy are in // between inlining and compute root. We still allocate some // temporary memory, but less that compute_root, and with // better locality (we load from it soon after writing to it, // so for larger images, values should still be in cache). We // still do some redundant work, but less than full inlining: // producer.ComputeAt(consumer, y): // - Temporary memory allocated: 10 floats // - Loads: 64 // - Stores: 56 // - Calls to sin: 40 } // We could also say producer.ComputeAt(consumer, x), but this // would be very similar to full inlining (the default // schedule). Instead let's distinguish between the loop level at // which we allocate storage for producer, and the loop level at // which we actually compute it. This unlocks a few optimizations. { var producer = new HSFunc("producer_root_y"); var consumer = new HSFunc("consumer_root_y"); producer[x, y] = HSMath.Sin(x * y); consumer[x, y] = (producer[x, y] + producer[x, y + 1] + producer[x + 1, y] + producer[x + 1, y + 1]) / 4; // Tell Halide to make a buffer to store all of producer at // the outermost level: producer.StoreRoot(); // ... but compute it as needed per y coordinate of the // consumer. producer.ComputeAt(consumer, y); producer.TraceStores(); consumer.TraceStores(); Console.WriteLine("\nEvaluating producer.store_root().ComputeAt(consumer, y)"); consumer.Realize <float>(4, 4); // See figures/lesson_08_store_root_compute_y.gif for a // visualization. // Reading the log or looking at the figure you should see // that producer and consumer again alternate on a // per-scanline basis. It computes a 5x2 box of the producer // to satisfy the first scanline of the consumer, but after // that it only computes a 5x1 box of the output for each new // scanline of the consumer! // // Halide has detected that for all scanlines except for the // first, it can reuse the values already sitting in the // buffer we've allocated for producer. Let's look at the // equivalent C: var result = new float[4, 4]; { // producer.store_root() implies that storage goes here: var producer_storage = new float[5, 5]; // There's an outer loop over scanlines of consumer: for (int yy = 0; yy < 4; yy++) { // Compute enough of the producer to satisfy this scanline // of the consumer. for (int py = yy; py < yy + 2; py++) { // Skip over rows of producer that we've already // computed in a previous iteration. if (yy > 0 && py == yy) { continue; } for (int px = 0; px < 5; px++) { producer_storage[py, px] = (float)Math.Sin(px * py); } } // Compute a scanline of the consumer. for (int xx = 0; xx < 4; xx++) { result[yy, xx] = (producer_storage[yy, xx] + producer_storage[yy + 1, xx] + producer_storage[yy, xx + 1] + producer_storage[yy + 1, xx + 1]) / 4; } } } Console.WriteLine("Pseudo-code for the schedule:"); consumer.PrintLoopNest(); Console.WriteLine(); // The performance characteristics of this strategy are pretty // good! The numbers are similar compute_root, except locality // is better. We're doing the minimum number of sin calls, // and we load values soon after they are stored, so we're // probably making good use of the cache: // producer.store_root().ComputeAt(consumer, y): // - Temporary memory allocated: 10 floats // - Loads: 64 // - Stores: 39 // - Calls to sin: 25 // Note that my claimed amount of memory allocated doesn't // match the reference C code. Halide is performing one more // optimization under the hood. It folds the storage for the // producer down into a circular buffer of two // scanlines. Equivalent C would actually look like this: { // Actually store 2 scanlines instead of 5 var producer_storage = new float[2, 5]; for (int yy = 0; yy < 4; yy++) { for (int py = yy; py < yy + 2; py++) { if (yy > 0 && py == yy) { continue; } for (int px = 0; px < 5; px++) { // Stores to producer_storage have their y coordinate bit-masked. producer_storage[py & 1, px] = (float)Math.Sin(px * py); } } // Compute a scanline of the consumer. for (int xx = 0; xx < 4; xx++) { // Loads from producer_storage have their y coordinate bit-masked. result[yy, xx] = (producer_storage[yy & 1, xx] + producer_storage[(yy + 1) & 1, xx] + producer_storage[yy & 1, xx + 1] + producer_storage[(yy + 1) & 1, xx + 1]) / 4; } } } } // We can do even better, by leaving the storage outermost, but // moving the computation into the innermost loop: { var producer = new HSFunc("producer_root_x"); var consumer = new HSFunc("consumer_root_x"); producer[x, y] = HSMath.Sin(x * y); consumer[x, y] = (producer[x, y] + producer[x, y + 1] + producer[x + 1, y] + producer[x + 1, y + 1]) / 4; // Store outermost, compute innermost. producer.StoreRoot().ComputeAt(consumer, x); producer.TraceStores(); consumer.TraceStores(); Console.WriteLine("\nEvaluating producer.store_root().ComputeAt(consumer, x)"); consumer.Realize <float>(4, 4); // See figures/lesson_08_store_root_compute_x.gif for a // visualization. // You should see that producer and consumer now alternate on // a per-pixel basis. Here's the equivalent C: var result = new float[4, 4]; // producer.store_root() implies that storage goes here, but // we can fold it down into a circular buffer of two // scanlines: var producer_storage = new float[2, 5]; // For every pixel of the consumer: for (int yy = 0; yy < 4; yy++) { for (int xx = 0; xx < 4; xx++) { // Compute enough of the producer to satisfy this // pixel of the consumer, but skip values that we've // already computed: if (yy == 0 && xx == 0) { producer_storage[yy & 1, xx] = (float)Math.Sin(xx * yy); } if (yy == 0) { producer_storage[yy & 1, xx + 1] = (float)Math.Sin((xx + 1) * yy); } if (xx == 0) { producer_storage[(yy + 1) & 1, xx] = (float)Math.Sin(xx * (yy + 1)); } producer_storage[(yy + 1) & 1, xx + 1] = (float)Math.Sin((xx + 1) * (yy + 1)); result[yy, xx] = (producer_storage[yy & 1, xx] + producer_storage[(yy + 1) & 1, xx] + producer_storage[yy & 1, xx + 1] + producer_storage[(yy + 1) & 1, xx + 1]) / 4; } } Console.WriteLine("Pseudo-code for the schedule:"); consumer.PrintLoopNest(); Console.WriteLine(); // The performance characteristics of this strategy are the // best so far. One of the four values of the producer we need // is probably still sitting in a register, so I won't count // it as a load: // producer.store_root().ComputeAt(consumer, x): // - Temporary memory allocated: 10 floats // - Loads: 48 // - Stores: 56 // - Calls to sin: 40 } // So what's the catch? Why not always do // producer.store_root().ComputeAt(consumer, x) for this type of // code? // // The answer is parallelism. In both of the previous two // strategies we've assumed that values computed on previous // iterations are lying around for us to reuse. This assumes that // previous values of x or y happened earlier in time and have // finished. This is not true if you parallelize or vectorize // either loop. Darn. If you parallelize, Halide won't inject the // optimizations that skip work already done if there's a parallel // loop in between the store_at level and the ComputeAt level, // and won't fold the storage down into a circular buffer either, // which makes our store_root pointless. // We're running out of options. We can make new ones by // splitting. We can store_at or ComputeAt at the natural // variables of the consumer (x and y), or we can split x or y // into new inner and outer sub-variables and then schedule with // respect to those. We'll use this to express fusion in tiles: { var producer = new HSFunc("producer_tile"); var consumer = new HSFunc("consumer_tile"); producer[x, y] = HSMath.Sin(x * y); consumer[x, y] = (producer[x, y] + producer[x, y + 1] + producer[x + 1, y] + producer[x + 1, y + 1]) / 4; // We'll compute 8x8 of the consumer, in 4x4 tiles. var x_outer = new HSVar("x_outer"); var y_outer = new HSVar("y_outer"); var x_inner = new HSVar("x_inner"); var y_inner = new HSVar("y_inner"); consumer.Tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4); // Compute the producer per tile of the consumer producer.ComputeAt(consumer, x_outer); // Notice that I wrote my schedule starting from the end of // the pipeline (the consumer). This is because the schedule // for the producer refers to x_outer, which we introduced // when we tiled the consumer. You can write it in the other // order, but it tends to be harder to read. // Turn on tracing. producer.TraceStores(); consumer.TraceStores(); Console.WriteLine("\nEvaluating:"); Console.WriteLine("consumer.tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);"); Console.WriteLine("producer.ComputeAt(consumer, x_outer);"); consumer.Realize <float>(8, 8); // See figures/lesson_08_tile.gif for a visualization. // The producer and consumer now alternate on a per-tile // basis. Here's the equivalent C: var result = new float[8, 8]; // For every tile of the consumer: for (int yy_outer = 0; yy_outer < 2; yy_outer++) { for (int xx_outer = 0; xx_outer < 2; xx_outer++) { // Compute the x and y coords of the start of this tile. int x_base = xx_outer * 4; int y_base = yy_outer * 4; // Compute enough of producer to satisfy this tile. A // 4x4 tile of the consumer requires a 5x5 tile of the // producer. var producer_storage = new float[5, 5]; for (int py = y_base; py < y_base + 5; py++) { for (int px = x_base; px < x_base + 5; px++) { producer_storage[py - y_base, px - x_base] = (float)Math.Sin(px * py); } } // Compute this tile of the consumer for (int yy_inner = 0; yy_inner < 4; yy_inner++) { for (int xx_inner = 0; xx_inner < 4; xx_inner++) { int xx = x_base + xx_inner; int yy = y_base + yy_inner; result[yy, xx] = (producer_storage[yy - y_base, xx - x_base] + producer_storage[yy - y_base + 1, xx - x_base] + producer_storage[yy - y_base, xx - x_base + 1] + producer_storage[yy - y_base + 1, xx - x_base + 1]) / 4; } } } } Console.WriteLine("Pseudo-code for the schedule:"); consumer.PrintLoopNest(); Console.WriteLine(); // Tiling can make sense for problems like this one with // stencils that reach outwards in x and y. Each tile can be // computed independently in parallel, and the redundant work // done by each tile isn't so bad once the tiles get large // enough. } // Let's try a mixed strategy that combines what we have done with // splitting, parallelizing, and vectorizing. This is one that // often works well in practice for large images. If you // understand this schedule, then you understand 95% of scheduling // in Halide. { var producer = new HSFunc("producer_mixed"); var consumer = new HSFunc("consumer_mixed"); producer[x, y] = HSMath.Sin(x * y); consumer[x, y] = (producer[x, y] + producer[x, y + 1] + producer[x + 1, y] + producer[x + 1, y + 1]) / 4; // Split the y coordinate of the consumer into strips of 16 scanlines: var yo = new HSVar("yo"); var yi = new HSVar("yi"); consumer.Split(y, yo, yi, 16); // Compute the strips using a thread pool and a task queue. consumer.Parallel(yo); // Vectorize across x by a factor of four. consumer.Vectorize(x, 4); // Now store the producer per-strip. This will be 17 scanlines // of the producer (16+1), but hopefully it will fold down // into a circular buffer of two scanlines: producer.StoreAt(consumer, yo); // Within each strip, compute the producer per scanline of the // consumer, skipping work done on previous scanlines. producer.ComputeAt(consumer, yi); // Also vectorize the producer (because sin is vectorizable on x86 using SSE). producer.Vectorize(x, 4); // Let's leave tracing off this time, because we're going to // evaluate over a larger image. // consumer.TraceStores(); // producer.TraceStores(); var halide_result = consumer.Realize <float>(160, 160); // See figures/lesson_08_mixed.mp4 for a visualization. // Here's the equivalent (serial) C: var c_result = new float[160, 160]; // For every strip of 16 scanlines (this loop is parallel in // the Halide version) for (int yyo = 0; yyo < 160 / 16 + 1; yyo++) { // 16 doesn't divide 160, so push the last slice upwards // to fit within [0, 159] (see lesson 05). int y_base = yyo * 16; if (y_base > 160 - 16) { y_base = 160 - 16; } // Allocate a two-scanline circular buffer for the producer var producer_storage = new float[2, 161]; // For every scanline in the strip of 16: for (int yyi = 0; yyi < 16; yyi++) { int yy = y_base + yyi; for (int py = yy; py < yy + 2; py++) { // Skip scanlines already computed *within this task* if (yyi > 0 && py == yy) { continue; } // Compute this scanline of the producer in 4-wide vectors for (int x_vec = 0; x_vec < 160 / 4 + 1; x_vec++) { int x_base = x_vec * 4; // 4 doesn't divide 161, so push the last vector left // (see lesson 05). if (x_base > 161 - 4) { x_base = 161 - 4; } // If you're on x86, Halide generates SSE code for this part: int[] xx = { x_base, x_base + 1, x_base + 2, x_base + 3 }; float[] vec = { (float)Math.Sin(xx[0] * py), (float)Math.Sin(xx[1] * py), (float)Math.Sin(xx[2] * py), (float)Math.Sin(xx[3] * py) }; producer_storage[py & 1, xx[0]] = vec[0]; producer_storage[py & 1, xx[1]] = vec[1]; producer_storage[py & 1, xx[2]] = vec[2]; producer_storage[py & 1, xx[3]] = vec[3]; } } // Now compute consumer for this scanline: for (int x_vec = 0; x_vec < 160 / 4; x_vec++) { int x_base = x_vec * 4; // Again, Halide's equivalent here uses SSE. int[] xx = { x_base, x_base + 1, x_base + 2, x_base + 3 }; float[] vec = { (producer_storage[yy & 1, xx[0]] + producer_storage[(yy + 1) & 1, xx[0]] + producer_storage[yy & 1, xx[0] + 1] + producer_storage[(yy + 1) & 1, xx[0] + 1]) / 4, (producer_storage[yy & 1, xx[1]] + producer_storage[(yy + 1) & 1, xx[1]] + producer_storage[yy & 1, xx[1] + 1] + producer_storage[(yy + 1) & 1, xx[1] + 1]) / 4, (producer_storage[yy & 1, xx[2]] + producer_storage[(yy + 1) & 1, xx[2]] + producer_storage[yy & 1, xx[2] + 1] + producer_storage[(yy + 1) & 1, xx[2] + 1]) / 4, (producer_storage[yy & 1, xx[3]] + producer_storage[(yy + 1) & 1, xx[3]] + producer_storage[yy & 1, xx[3] + 1] + producer_storage[(yy + 1) & 1, xx[3] + 1]) / 4 }; c_result[yy, xx[0]] = vec[0]; c_result[yy, xx[1]] = vec[1]; c_result[yy, xx[2]] = vec[2]; c_result[yy, xx[3]] = vec[3]; } } } Console.WriteLine("Pseudo-code for the schedule:"); consumer.PrintLoopNest(); Console.WriteLine(); // Look on my code, ye mighty, and despair! // Let's check the C result against the Halide result. Doing // this I found several bugs in my C implementation, which // should tell you something. for (int yy = 0; yy < 160; yy++) { for (int xx = 0; xx < 160; xx++) { float error = halide_result[xx, yy] - c_result[yy, xx]; // It's floating-point math, so we'll allow some slop: if (error < -0.001f || error > 0.001f) { Console.WriteLine("halide_result(%d, %d) = %f instead of %f", xx, yy, halide_result[xx, yy], c_result[yy, xx]); return(-1); } } } } // This stuff is hard. We ended up in a three-way trade-off // between memory bandwidth, redundant work, and // parallelism. Halide can't make the correct choice for you // automatically (sorry). Instead it tries to make it easier for // you to explore various options, without messing up your // program. In fact, Halide promises that scheduling calls like // compute_root won't change the meaning of your algorithm -- you // should get the same bits back no matter how you schedule // things. // So be empirical! Experiment with various schedules and keep a // log of performance. Form hypotheses and then try to prove // yourself wrong. Don't assume that you just need to vectorize // your code by a factor of four and run it on eight cores and // you'll get 32x faster. This almost never works. Modern systems // are complex enough that you can't predict performance reliably // without running your code. // We suggest you start by scheduling all of your non-trivial // stages compute_root, and then work from the end of the pipeline // upwards, inlining, parallelizing, and vectorizing each stage in // turn until you reach the top. // Halide is not just about vectorizing and parallelizing your // code. That's not enough to get you very far. Halide is about // giving you tools that help you quickly explore different // trade-offs between locality, redundant work, and parallelism, // without messing up the actual result you're trying to compute. Console.WriteLine("Success!"); return(0); }