/// <summary>
        /// SetupPsi() is called at application startup. It is responsible for
        /// building and starting the Psi pipeline
        /// </summary>
        public void SetupPsi()
        {
            Console.WriteLine("================================================================================");
            Console.WriteLine("                               Kiosk Awareness sample");
            Console.WriteLine("================================================================================");
            Console.WriteLine();

            this.pipeline = Pipeline.Create();

            // Next register an event handler to catch pipeline errors
            this.pipeline.PipelineCompletionEvent += this.PipelineCompletionEvent;

            /*
             * // bool usingKqml = false;
             * string facilitatorIP = null;
             * int facilitatorPort = -1;
             * int localPort = -1;
             *
             *
             * if (arguments.Length > 0)
             * {
             * if (arguments.Length < 3)
             * {
             *     Console.WriteLine("Usage for running with a facilitator: \nKioskMain facilitatorIP facilitatorPort localPort");
             *     return;
             * }
             *
             * // usingKqml = true;
             *
             * facilitatorIP = arguments[0];
             * facilitatorPort = int.Parse(arguments[1]);
             * localPort = int.Parse(arguments[2]);
             * }
             */

            // bool showLiveVisualization = false;
            string inputLogPath = null;
            // string outputLogPath = null;

            DateTime startTime = DateTime.Now;

            IProducer <AudioBuffer> audioInput = SetupAudioInput(this.pipeline, inputLogPath, ref startTime);

            // Create our webcam
            MediaCapture webcam = new MediaCapture(this.pipeline, 320, 240, 10);

            Debug.WriteLine("Open webcam");

            FaceCasClassifier f = new FaceCasClassifier();

            Debug.WriteLine("Load classifier");
            Debug.WriteLine(f);

            var mouthOpenAsBool = webcam.Out.ToGrayViaOpenCV(f, FrameCount).Select(
                (img, e) =>
            {
                // Debug.WriteLine(FrameCount % 10);
                bool mouthOpen = false;
                if ((Math.Abs(DisNose) / (4 * Math.Abs(DisLipMiddle))) < 3)
                {
                    mouthOpen = true;
                }
                else
                {
                    mouthOpen = false;
                }
                Console.WriteLine(Math.Abs(DisLipMiddle) + " " + Math.Abs(DisLipRight) + " " + Math.Abs(DisLipLeft) + " " + (Math.Abs(DisNose) / (4 * Math.Abs(DisLipMiddle))) + " " + mouthOpen);
                this.DispImage.UpdateImage(img);
                return(mouthOpen);
            });

            var mouthAndSpeech = audioInput.Pair(mouthOpenAsBool).Where(t => true).Select(t =>
            {
                return(t.Item1);
            }
                                                                                          );

            SystemSpeechRecognizer recognizer = SetupSpeechRecognizer(this.pipeline);

            mouthAndSpeech.PipeTo(recognizer);

            var finalResults = recognizer.Out.Where(result => result.IsFinal);

            finalResults.Do(result =>
            {
                var ssrResult = result as SpeechRecognitionResult;
                Console.WriteLine($"{ssrResult.Text} (confidence: {ssrResult.Confidence})");
            });

            var text = finalResults.Select(result =>
            {
                var ssrResult = result as SpeechRecognitionResult;
                return(ssrResult.Text);
            });

            // Finally start the pipeline running
            try
            {
                this.pipeline.RunAsync();
            }
            catch (AggregateException exp)
            {
                MessageBox.Show("Error! " + exp.InnerException.Message);
            }
        }
        /// <summary>
        /// Here we define an Psi extension. This extension will take a stream of images (source)
        /// and create a new stream of converted images.
        /// </summary>
        /// <param name="source">Our source producer (source stream of image samples)</param>
        /// <param name="f">A wapper face classifier object (null means use the default)</param>
        /// <param name="framecount">A integer to control the frame number</param>
        /// <param name="deliveryPolicy">Our delivery policy (null means use the default)</param>
        /// <returns>The new stream of converted images.</returns>
        public static IProducer <Shared <Image> > ToGrayViaOpenCV(this IProducer <Shared <Image> > source, FaceCasClassifier f = null, int framecount = 0, DeliveryPolicy deliveryPolicy = null)
        {
            // Process informs the pipeline that we want to call our lambda ("(srcImage, env, e) =>{...}") with each image
            // from the stream.
            return(source.Process <Shared <Image>, Shared <Image> >(
                       (srcImage, env, e) =>
            {
                // Our lambda here is called with each image sample from our stream and calls OpenCV to convert
                // the image into a grayscale image. We then post the resulting gray scale image to our event queu
                // so that the Psi pipeline will send it to the next component.

                // Have Psi allocate a new image. We will convert the current image ('srcImage') into this new image.
                using (var destImage = ImagePool.GetOrCreate(srcImage.Resource.Width, srcImage.Resource.Height, PixelFormat.Gray_8bpp))
                {
                    // Call into our OpenCV wrapper to convert the source image ('srcImage') into the newly created image ('destImage')
                    // Note: since srcImage & destImage are Shared<> we need to access the Microsoft.Psi.Imaging.Image data via the Resource member
                    OpenCVMethods.ToGray(srcImage.ToImageBuffer(), destImage.ToImageBuffer(), f, ref MainWindow.DisNose, ref MainWindow.DisLipMiddle, ref MainWindow.DisLipRight, ref MainWindow.DisLipLeft, ref MainWindow.HasFace);

                    // Debug.WriteLine(MainWindow.MouthOpen);
                    e.Post(destImage, env.OriginatingTime);
                }
            }, deliveryPolicy));
        }
예제 #3
0
        public static void StartListeningAndLooking(string[] args, bool live_visual_flag, bool store_visual_flag, string inputStorePath, string outputStorePath, bool usingKqml, String[] compargs)
        {
            using (Pipeline pipeline = Pipeline.Create())
            {
                string facilitatorIP   = null;
                int    facilitatorPort = -1;
                int    localPort       = -1;

                /*
                 * if (args.Length > 0)
                 * {
                 *  if (args.Length < 3)
                 *  {
                 *      Console.WriteLine("Usage for running with a facilitator: \nKioskMain facilitatorIP facilitatorPort localPort");
                 *      return;
                 *  }
                 *  usingKqml = true;
                 *
                 *  facilitatorIP = args[0];
                 *  facilitatorPort = int.Parse(args[1]);
                 *  localPort = int.Parse(args[2]);
                 * }
                 */
                string outputLogPath = null;

                if (outputStorePath != null && outputStorePath != "" && Directory.Exists(outputStorePath))
                {
                    outputLogPath = outputStorePath;
                }
                Console.WriteLine(outputLogPath == null);

                string inputLogPath = null;

                if (inputStorePath != null && inputStorePath != "" && Directory.Exists(inputStorePath))
                {
                    inputLogPath = inputStorePath;
                }
                Console.WriteLine(inputLogPath == null);

                bool showLiveVisualization = live_visual_flag;

                // Needed only for live visualization
                DateTime startTime = DateTime.Now;

                // Use either live audio from the microphone or audio from a previously saved log
                IProducer <AudioBuffer> audioInput = SetupAudioInput(pipeline, inputLogPath, ref startTime);

                // Create our webcam
                MediaCapture webcam = new MediaCapture(pipeline, 320, 240, 10);

                FaceCasClassifier f = new FaceCasClassifier();

                Console.WriteLine("Load classifier");
                Console.WriteLine(f);

                // Bind the webcam's output to our display image.
                // The "Do" operator is executed on each sample from the stream (webcam.Out), which are the images coming from the webcam
                var processedVideo = inputLogPath != null?SetupVideoInput(pipeline, inputLogPath, ref startTime) : webcam.Out.ToGrayViaOpenCV(f).EncodeJpeg(90, DeliveryPolicy.LatestMessage);

                var mouthOpenAsInt = processedVideo.Select(
                    (img, e) =>
                {
                    // Debug.WriteLine(FrameCount % 10);
                    // Console.WriteLine(Math.Abs(DisLipMiddle) + " " + Math.Abs(DisLipRight) + " " + Math.Abs(DisLipLeft) + " " + (Math.Abs(DisNose) / (4 * Math.Abs(DisLipMiddle))) + " " + mouthOpen);
                    //return MouthOpen;
                    return(MouthOpen);
                });

                /*
                 * var hasFaceAsBool = webcam.Out.ToGrayViaOpenCV(f).Select(
                 * (img, e) =>
                 * {
                 *  bool hasFacebool = false;
                 *  if (HasFace == 1)
                 *  {
                 *      hasFacebool = true;
                 *  }
                 *  else
                 *  {
                 *      hasFacebool = false;
                 *  }
                 *  return hasFacebool;
                 * });
                 */

                var mouthAndSpeech = audioInput.Pair(mouthOpenAsInt).Where(t => t.Item2 > -1).Select(t => {
                    return(t.Item1);
                }
                                                                                                     );

                SystemSpeechRecognizer recognizer = SetupSpeechRecognizer(pipeline);

                // Subscribe the recognizer to the input audio
                mouthAndSpeech.PipeTo(recognizer);
                //audioInput.PipeTo(recognizer);

                // Partial and final speech recognition results are posted on the same stream. Here
                // we use Psi's Where() operator to filter out only the final recognition results.
                var finalResults = inputLogPath != null?SetupSpeechInput(pipeline, inputLogPath, ref startTime) : recognizer.Out.Where(result => result.IsFinal);

                // Print the recognized text of the final recognition result to the console.
                finalResults.Do(result =>
                {
                    var ssrResult = result as SpeechRecognitionResult;
                    Console.WriteLine($"{ssrResult.Text} (confidence: {ssrResult.Confidence})");
                });

                var finalResultsHighCf = finalResults.Where(t => (t as SpeechRecognitionResult).Confidence > 0.6).Select(t =>
                {
                    Console.WriteLine("Good Confidence!");
                    return(t);
                });

                // Get just the text from the Speech Recognizer.  We may want to add another filter to only get text if confidence > 0.8
                var text = finalResultsHighCf.Pair(mouthOpenAsInt).Select(result =>
                {
                    var ssrResult = result.Item1 as SpeechRecognitionResult;
                    int userid    = result.Item2;
                    Console.WriteLine("user" + userid + "+" + ssrResult.Text);
                    return("user" + userid + "+" + ssrResult.Text);
                });

                // Setup KQML connection to Companion

                NU.Kqml.SocketStringConsumer kqml = null;
                if (usingKqml)
                {
                    facilitatorIP   = compargs[0];
                    facilitatorPort = Convert.ToInt32(compargs[1]);
                    localPort       = Convert.ToInt32(compargs[2]);
                    Console.WriteLine("Your Companion IP address is: " + facilitatorIP);
                    Console.WriteLine("Your Companion port is: " + facilitatorPort);
                    Console.WriteLine("Your local port is: " + localPort);

                    kqml = new NU.Kqml.SocketStringConsumer(pipeline, facilitatorIP, facilitatorPort, localPort);

                    text.PipeTo(kqml.In);
                }

                // Create a data store to log the data to if necessary. A data store is necessary
                // only if output logging or live visualization are enabled.
                Console.WriteLine(outputLogPath == null);
                var dataStore = CreateDataStore(pipeline, outputLogPath, showLiveVisualization);
                Console.WriteLine(dataStore == null);
                Console.WriteLine("dataStore is empty");
                // For disk logging or live visualization only
                if (dataStore != null)
                {
                    // Log the microphone audio and recognition results
                    processedVideo.Write($"{Program.AppName}.WebCamProcessedVideo", dataStore);
                    audioInput.Write($"{Program.AppName}.MicrophoneAudio", dataStore);
                    finalResults.Write($"{Program.AppName}.FinalRecognitionResults", dataStore);

                    Console.WriteLine("Stored the data here! ");
                }

                // Ignore this block if live visualization is not enabled
                if (showLiveVisualization)
                {
                    // Create the visualization client
                    var visualizationClient = new VisualizationClient();

                    // Clear all data if the visualizer is already open
                    visualizationClient.ClearAll();

                    // Create the visualization client to visualize live data
                    visualizationClient.SetLiveMode(startTime);

                    // Plot the video stream in a new panel
                    visualizationClient.AddXYPanel();
                    //processedVideo.Show(visualizationClient);

                    // Plot the microphone audio stream in a new panel
                    visualizationClient.AddTimelinePanel();
                    //audioInput.Show(visualizationClient);

                    // Plot the recognition results in a new panel
                    visualizationClient.AddTimelinePanel();
                    //finalResults.Show(visualizationClient);
                }

                if (store_visual_flag)
                {
                    // Create the visualization client
                    var visualizationClient = new VisualizationClient();

                    // Clear all data if the visualizer is already open
                    visualizationClient.ClearAll();

                    // Create the visualization client to visualize live data
                    visualizationClient.SetLiveMode(startTime);

                    // Plot the video stream in a new panel
                    visualizationClient.AddXYPanel();
                    processedVideo.Show(visualizationClient);

                    // Plot the microphone audio stream in a new panel
                    visualizationClient.AddTimelinePanel();
                    audioInput.Show(visualizationClient);

                    // Plot the recognition results in a new panel
                    visualizationClient.AddTimelinePanel();
                    finalResults.Show(visualizationClient);
                }

                // Register an event handler to catch pipeline errors
                pipeline.PipelineCompletionEvent += PipelineCompletionEvent;

                // Run the pipeline
                pipeline.RunAsync();

                Console.WriteLine("Press any key to exit...");
                Console.ReadKey(true);

                // if (kqml != null) kqml.Stop();
            }
        }