예제 #1
0
        public void Copy(FileInfo source, FileInfo target, int start, int stop, int size)
        {
            var inputField = new IInputField[55];

            var norm = new DataNormalization {
                Report = this, Storage = new NormalizationStorageCSV(target.ToString())
            };

            for (int i = 0; i < 55; i++)
            {
                inputField[i] = new InputFieldCSV(true, source.ToString(), i);
                norm.AddInputField(inputField[i]);
                IOutputField outputField = new OutputFieldDirect(inputField[i]);
                norm.AddOutputField(outputField);
            }

            // load only the part we actually want, i.e. training or eval
            var segregator2 = new IndexSampleSegregator(start, stop, size);

            norm.AddSegregator(segregator2);

            norm.Process();
        }
예제 #2
0
        public void Narrow(FileInfo source, FileInfo target, int field, int count)
        {
            var inputField = new IInputField[55];

            var norm = new DataNormalization {
                Report = this, Storage = new NormalizationStorageCSV(target.ToString())
            };

            for (int i = 0; i < 55; i++)
            {
                inputField[i] = new InputFieldCSV(true, source.ToString(), i);
                norm.AddInputField(inputField[i]);
                IOutputField outputField = new OutputFieldDirect(inputField[i]);
                norm.AddOutputField(outputField);
            }

            var segregator = new IntegerBalanceSegregator(inputField[field], count);

            norm.AddSegregator(segregator);

            norm.Process();
            Console.WriteLine(@"Samples per tree type:");
            Console.WriteLine(segregator.DumpCounts());
        }