public void Copy(FileInfo source, FileInfo target, int start, int stop, int size) { var inputField = new IInputField[55]; var norm = new DataNormalization { Report = this, Storage = new NormalizationStorageCSV(target.ToString()) }; for (int i = 0; i < 55; i++) { inputField[i] = new InputFieldCSV(true, source.ToString(), i); norm.AddInputField(inputField[i]); IOutputField outputField = new OutputFieldDirect(inputField[i]); norm.AddOutputField(outputField); } // load only the part we actually want, i.e. training or eval var segregator2 = new IndexSampleSegregator(start, stop, size); norm.AddSegregator(segregator2); norm.Process(); }
public void Narrow(FileInfo source, FileInfo target, int field, int count) { var inputField = new IInputField[55]; var norm = new DataNormalization { Report = this, Storage = new NormalizationStorageCSV(target.ToString()) }; for (int i = 0; i < 55; i++) { inputField[i] = new InputFieldCSV(true, source.ToString(), i); norm.AddInputField(inputField[i]); IOutputField outputField = new OutputFieldDirect(inputField[i]); norm.AddOutputField(outputField); } var segregator = new IntegerBalanceSegregator(inputField[field], count); norm.AddSegregator(segregator); norm.Process(); Console.WriteLine(@"Samples per tree type:"); Console.WriteLine(segregator.DumpCounts()); }