예제 #1
0
        public void Execute(IExampleInterface app)
        {
            string            inputFile = "C:\\jth\\iris.csv";
            DataNormalization normalize = new DataNormalization();
            IInputField       a, b, c, d;

            normalize.AddInputField(a = new InputFieldCSV(true, inputFile, "sepal_l"));
            normalize.AddInputField(b = new InputFieldCSV(true, inputFile, "sepal_w"));
            normalize.AddInputField(c = new InputFieldCSV(true, inputFile, "petal_l"));
            normalize.AddInputField(d = new InputFieldCSV(true, inputFile, "petal_w"));
            normalize.AddInputField(new InputFieldCSV(false, inputFile, "species"));
            normalize.AddOutputField(new OutputFieldRangeMapped(a));
            normalize.AddOutputField(new OutputFieldRangeMapped(b));
            normalize.AddOutputField(new OutputFieldRangeMapped(c));
            normalize.AddOutputField(new OutputFieldRangeMapped(d));
            //normalize.AddOutputField(new OutputOneOf(1,0));
            NormalizationStorageMLDataSet store = new NormalizationStorageMLDataSet(4, 0);

            normalize.Storage = store;
            normalize.Report  = new ConsoleStatusReportable();

            normalize.Process(true);
            Console.WriteLine(store.DataSet.Count);
        }
예제 #2
0
        public void Execute(IExampleInterface app)
        {
            string            inputFile = @"C:\Development\AI\machinelearning\encog-dotnet-core-master\encog-core-test\Resources\iris.csv";
            DataNormalization normalize = new DataNormalization();
            IInputField       a, b, c, d;

            normalize.AddInputField(a = new InputFieldCSV(true, inputFile, "sepal_l"));
            normalize.AddInputField(b = new InputFieldCSV(true, inputFile, "sepal_w"));
            normalize.AddInputField(c = new InputFieldCSV(true, inputFile, "petal_l"));
            normalize.AddInputField(d = new InputFieldCSV(true, inputFile, "petal_w"));
            normalize.AddInputField(new InputFieldCSV(false, inputFile, "species"));
            normalize.AddOutputField(new OutputFieldRangeMapped(a));
            normalize.AddOutputField(new OutputFieldRangeMapped(b));
            normalize.AddOutputField(new OutputFieldRangeMapped(c));
            normalize.AddOutputField(new OutputFieldRangeMapped(d));
            //normalize.AddOutputField(new OutputOneOf(1,0));
            NormalizationStorageMLDataSet store = new NormalizationStorageMLDataSet(4, 0);

            normalize.Storage = store;
            normalize.Report  = new ConsoleStatusReportable();

            normalize.Process(true);
            Console.WriteLine(store.DataSet.Count + " Datasets validated");
        }
예제 #3
0
        public void Copy(FileInfo source, FileInfo target, int start, int stop, int size)
        {
            var inputField = new IInputField[55];

            var norm = new DataNormalization {
                Report = this, Storage = new NormalizationStorageCSV(target.ToString())
            };

            for (int i = 0; i < 55; i++)
            {
                inputField[i] = new InputFieldCSV(true, source.ToString(), i);
                norm.AddInputField(inputField[i]);
                IOutputField outputField = new OutputFieldDirect(inputField[i]);
                norm.AddOutputField(outputField);
            }

            // load only the part we actually want, i.e. training or eval
            var segregator2 = new IndexSampleSegregator(start, stop, size);

            norm.AddSegregator(segregator2);

            norm.Process();
        }
예제 #4
0
        public void Narrow(FileInfo source, FileInfo target, int field, int count)
        {
            var inputField = new IInputField[55];

            var norm = new DataNormalization {
                Report = this, Storage = new NormalizationStorageCSV(target.ToString())
            };

            for (int i = 0; i < 55; i++)
            {
                inputField[i] = new InputFieldCSV(true, source.ToString(), i);
                norm.AddInputField(inputField[i]);
                IOutputField outputField = new OutputFieldDirect(inputField[i]);
                norm.AddOutputField(outputField);
            }

            var segregator = new IntegerBalanceSegregator(inputField[field], count);

            norm.AddSegregator(segregator);

            norm.Process();
            Console.WriteLine(@"Samples per tree type:");
            Console.WriteLine(segregator.DumpCounts());
        }
예제 #5
0
        public DataNormalization Step3(bool useOneOf)
        {
            Console.WriteLine(@"Step 3: Normalize training data");
            IInputField inputElevation;
            IInputField inputAspect;
            IInputField inputSlope;
            IInputField hWater;
            IInputField vWater;
            IInputField roadway;
            IInputField shade9;
            IInputField shade12;
            IInputField shade3;
            IInputField firepoint;
            var         wilderness = new IInputField[4];
            var         soilType   = new IInputField[40];
            IInputField coverType;

            var norm = new DataNormalization
            {
                Report  = this,
                Storage = new NormalizationStorageCSV(_config.NormalizedDataFile.ToString())
            };

            norm.AddInputField(inputElevation = new InputFieldCSV(true, _config.BalanceFile.ToString(), 0));
            norm.AddInputField(inputAspect    = new InputFieldCSV(true, _config.BalanceFile.ToString(), 1));
            norm.AddInputField(inputSlope     = new InputFieldCSV(true, _config.BalanceFile.ToString(), 2));
            norm.AddInputField(hWater         = new InputFieldCSV(true, _config.BalanceFile.ToString(), 3));
            norm.AddInputField(vWater         = new InputFieldCSV(true, _config.BalanceFile.ToString(), 4));
            norm.AddInputField(roadway        = new InputFieldCSV(true, _config.BalanceFile.ToString(), 5));
            norm.AddInputField(shade9         = new InputFieldCSV(true, _config.BalanceFile.ToString(), 6));
            norm.AddInputField(shade12        = new InputFieldCSV(true, _config.BalanceFile.ToString(), 7));
            norm.AddInputField(shade3         = new InputFieldCSV(true, _config.BalanceFile.ToString(), 8));
            norm.AddInputField(firepoint      = new InputFieldCSV(true, _config.BalanceFile.ToString(), 9));

            for (int i = 0; i < 4; i++)
            {
                norm.AddInputField(wilderness[i] = new InputFieldCSV(true, _config.BalanceFile.ToString(), 10 + i));
            }

            for (int i = 0; i < 40; i++)
            {
                norm.AddInputField(soilType[i] = new InputFieldCSV(true, _config.BalanceFile.ToString(), 14 + i));
            }

            norm.AddInputField(coverType = new InputFieldCSV(false, _config.BalanceFile.ToString(), 54));

            norm.AddOutputField(new OutputFieldRangeMapped(inputElevation));
            norm.AddOutputField(new OutputFieldRangeMapped(inputAspect));
            norm.AddOutputField(new OutputFieldRangeMapped(inputSlope));
            norm.AddOutputField(new OutputFieldRangeMapped(hWater));
            norm.AddOutputField(new OutputFieldRangeMapped(vWater));
            norm.AddOutputField(new OutputFieldRangeMapped(roadway));
            norm.AddOutputField(new OutputFieldRangeMapped(shade9));
            norm.AddOutputField(new OutputFieldRangeMapped(shade12));
            norm.AddOutputField(new OutputFieldRangeMapped(shade3));
            norm.AddOutputField(new OutputFieldRangeMapped(firepoint));

            for (int i = 0; i < 40; i++)
            {
                norm.AddOutputField(new OutputFieldDirect(soilType[i]));
            }

            if (useOneOf)
            {
                BuildOutputOneOf(norm, coverType);
            }
            else
            {
                BuildOutputEquilateral(norm, coverType);
            }

            norm.Process();
            return(norm);
        }