void FixedUpdate()
    {
        //玩家控制键盘输入 AD键控制赛车方向,WS键分别控制赛车前进、后退,空格键控制手闸
        float h         = CrossPlatformInputManager.GetAxis("Horizontal");
        float v         = CrossPlatformInputManager.GetAxis("Vertical");
        float handbrake = Input.GetAxis("Jump");

        //将玩家输入的参数值传入CarMove函数
        _car.CarMove(h, v, v, handbrake);
    }
    void OnJoystickMove(MovingJoystick move)

    {
        Debug.Log("Arrive");
        //		Debug.Log ("accel:" + accel.ToString());
        if (move.joystickName != "MoveJoystick")

        {
            return;
        }

        //获取摇杆中心偏移的坐标

        float joyPositionX = move.joystickAxis.x;

        float joyPositionY = move.joystickAxis.y;



        if (joyPositionY != 0 || joyPositionX != 0)

        {
            float h         = 0;
            float v         = 0;
            float handbreak = 0;
            if (joyPositionX > 0)
            {
                h = 1;
            }
            else
            {
                h = -1;
            }

            if (joyPositionY > 0)
            {
                v = 1;
            }
            else
            {
                v = -1;
            }
            _car.CarMove(h, v, v, handbreak);
        }
    }
예제 #3
0
    void OnJoystickMove(MovingJoystick move)

    {
        Debug.Log("Arrive");
        //		Debug.Log ("accel:" + accel.ToString());
        if (move.joystickName != "MovingJoystick")

        {
            return;
        }

        //获取摇杆中心偏移的坐标

        float joyPositionX = move.joystickAxis.x;

        float joyPositionY = move.joystickAxis.y;



        Debug.Log("joyPositionX:" + joyPositionX);
        Debug.Log("joyPositionY:" + joyPositionY);

        if (joyPositionY != 0 || joyPositionX != 0)

        {
//			float h = 0;
//			float v = 0;
            float handbreak = 0;
//			if (joyPositionX > 0) {
//				h = 1;
//			} else {
//				h = -1;
//			}
//
//			if (joyPositionY > 0) {
//				v = 1;
//			} else {
//				v = -1;
//			}
            _car.CarMove(joyPositionX, joyPositionY, joyPositionY, handbreak);
        }
    }
예제 #4
0
    private void FixedUpdate()
    {
        if (m_Target == null || !m_Driving)
        {
            m_CarController.CarMove(0, 500f, 0f, 0f);
        }
        else
        {
            Vector3 fwd = transform.forward;
            if (m_Rigidbody.velocity.magnitude > m_CarController.MaxSpeed * 0.1f)
            {
                fwd = m_Rigidbody.velocity;
            }

            float desiredSpeed = m_CarController.MaxSpeed;

            // now it's time to decide if we should be slowing down...
            switch (m_BrakeCondition)
            {
            case BrakeCondition.TargetDirectionDifference:
            {
                // the car will brake according to the upcoming change in direction of the target. Useful for route-based AI, slowing for corners.

                // check out the angle of our target compared to the current direction of the car
                float approachingCornerAngle = Vector3.Angle(m_Target.forward, fwd);

                // also consider the current amount we're turning, multiplied up and then compared in the same way as an upcoming corner angle
                float spinningAngle = m_Rigidbody.angularVelocity.magnitude * m_CautiousAngularVelocityFactor;

                // if it's different to our current angle, we need to be cautious (i.e. slow down) a certain amount
                float cautiousnessRequired = Mathf.InverseLerp(0, m_CautiousMaxAngle,
                                                               Mathf.Max(spinningAngle,
                                                                         approachingCornerAngle));
                desiredSpeed = Mathf.Lerp(m_CarController.MaxSpeed, m_CarController.MaxSpeed * m_CautiousSpeedFactor,
                                          cautiousnessRequired);
                break;
            }

            case BrakeCondition.TargetDistance:
            {
                // the car will brake as it approaches its target, regardless of the target's direction. Useful if you want the car to
                // head for a stationary target and come to rest when it arrives there.

                // check out the distance to target
                Vector3 delta = m_Target.position - transform.position;
                float   distanceCautiousFactor = Mathf.InverseLerp(m_CautiousMaxDistance, 0, delta.magnitude);

                // also consider the current amount we're turning, multiplied up and then compared in the same way as an upcoming corner angle
                float spinningAngle = m_Rigidbody.angularVelocity.magnitude * m_CautiousAngularVelocityFactor;

                // if it's different to our current angle, we need to be cautious (i.e. slow down) a certain amount
                float cautiousnessRequired = Mathf.Max(
                    Mathf.InverseLerp(0, m_CautiousMaxAngle, spinningAngle), distanceCautiousFactor);
                desiredSpeed = Mathf.Lerp(m_CarController.MaxSpeed, m_CarController.MaxSpeed * m_CautiousSpeedFactor,
                                          cautiousnessRequired);
                break;
            }

            case BrakeCondition.NeverBrake:
                break;
            }

            // Evasive action due to collision with other cars:

            // our target position starts off as the 'real' target position
            Vector3 offsetTargetPos = m_Target.position;

            // if are we currently taking evasive action to prevent being stuck against another car:
            if (Time.time < m_AvoidOtherCarTime)
            {
                // slow down if necessary (if we were behind the other car when collision occured)
                desiredSpeed *= m_AvoidOtherCarSlowdown;

                // and veer towards the side of our path-to-target that is away from the other car
                offsetTargetPos += m_Target.right * m_AvoidPathOffset;
            }
            else
            {
                // no need for evasive action, we can just wander across the path-to-target in a random way,
                // which can help prevent AI from seeming too uniform and robotic in their driving
                offsetTargetPos += m_Target.right *
                                   (Mathf.PerlinNoise(Time.time * m_LateralWanderSpeed, m_RandomPerlin) * 2 - 1) *
                                   m_LateralWanderDistance;
            }

            // use different sensitivity depending on whether accelerating or braking:
            float accelBrakeSensitivity = (desiredSpeed < m_CarController.CurrentSpeed)
                                              ? m_BrakeSensitivity
                                              : m_AccelSensitivity;

            // decide the actual amount of accel/brake input to achieve desired speed.
            float accel = Mathf.Clamp((desiredSpeed - m_CarController.CurrentSpeed) * accelBrakeSensitivity, -1, 1);

            // add acceleration 'wander', which also prevents AI from seeming too uniform and robotic in their driving
            // i.e. increasing the accel wander amount can introduce jostling and bumps between AI cars in a race
            accel *= (1 - m_AccelWanderAmount) +
                     (Mathf.PerlinNoise(Time.time * m_AccelWanderSpeed, m_RandomPerlin) * m_AccelWanderAmount);

            // calculate the local-relative position of the target, to steer towards
            Vector3 localTarget = transform.InverseTransformPoint(offsetTargetPos);

            // work out the local angle towards the target
            float targetAngle = Mathf.Atan2(localTarget.x, localTarget.z) * Mathf.Rad2Deg;

            // get the amount of steering needed to aim the car towards the target
            float steer = Mathf.Clamp(targetAngle * m_SteerSensitivity, -1, 1) * Mathf.Sign(m_CarController.CurrentSpeed);

            // feed input to the car controller.
            m_CarController.CarMove(steer, accel, accel, 0f);

            // if appropriate, stop driving when we're close enough to the target.
            if (m_StopWhenTargetReached && localTarget.magnitude < m_ReachTargetThreshold)
            {
                m_Driving = false;
            }
        }
    }