예제 #1
0
        private void EstimatePoseGridBoard(Mat rgbMat)
        {
            int valid = Aruco.estimatePoseBoard(corners, ids, gridBoard, camMatrix, distCoeffs, rvec, tvec);

            // if at least one board marker detected
            if (valid > 0)
            {
                // In this example we are processing with RGB color image, so Axis-color correspondences are X: blue, Y: green, Z: red. (Usually X: red, Y: green, Z: blue)
                Calib3d.drawFrameAxes(rgbMat, camMatrix, distCoeffs, rvec, tvec, markerLength * 0.5f);

                UpdateARObjectTransform(rvec, tvec);
            }
        }
예제 #2
0
        private void OnDetectionDone()
        {
            DebugUtils.TrackTick();

            if (displayCameraPreview)
            {
                Imgproc.cvtColor(downScaleMat, rgbMat4preview, Imgproc.COLOR_GRAY2RGB);

                if (ids.total() > 0)
                {
                    Aruco.drawDetectedMarkers(rgbMat4preview, corners, ids, new Scalar(0, 255, 0));

                    if (applyEstimationPose)
                    {
                        for (int i = 0; i < ids.total(); i++)
                        {
                            using (Mat rvec = new Mat(rvecs, new OpenCVForUnity.CoreModule.Rect(0, i, 1, 1)))
                                using (Mat tvec = new Mat(tvecs, new OpenCVForUnity.CoreModule.Rect(0, i, 1, 1)))
                                {
                                    // In this example we are processing with RGB color image, so Axis-color correspondences are X: blue, Y: green, Z: red. (Usually X: red, Y: green, Z: blue)
                                    Calib3d.drawFrameAxes(rgbMat4preview, camMatrix, distCoeffs, rvec, tvec, markerLength * 0.5f);
                                }
                        }
                    }
                }

                Utils.fastMatToTexture2D(rgbMat4preview, texture);
            }

            if (applyEstimationPose)
            {
                if (hasUpdatedARTransformMatrix)
                {
                    hasUpdatedARTransformMatrix = false;

                    // Apply the cameraToWorld matrix with the Z-axis inverted.
                    ARM = arCamera.cameraToWorldMatrix * invertZM * ARM;

                    if (enableLerpFilter)
                    {
                        arGameObject.SetMatrix4x4(ARM);
                    }
                    else
                    {
                        ARUtils.SetTransformFromMatrix(arGameObject.transform, ref ARM);
                    }
                }
            }

            isDetecting = false;
        }
예제 #3
0
        private void EstimatePoseChArUcoDiamondMarker(Mat rgbMat)
        {
            Aruco.estimatePoseSingleMarkers(diamondCorners, diamondSquareLength, camMatrix, distCoeffs, rvecs, tvecs);

            for (int i = 0; i < rvecs.total(); i++)
            {
                using (Mat rvec = new Mat(rvecs, new OpenCVForUnity.CoreModule.Rect(0, i, 1, 1)))
                    using (Mat tvec = new Mat(tvecs, new OpenCVForUnity.CoreModule.Rect(0, i, 1, 1))) {
                        // In this example we are processing with RGB color image, so Axis-color correspondences are X: blue, Y: green, Z: red. (Usually X: red, Y: green, Z: blue)
                        Calib3d.drawFrameAxes(rgbMat, camMatrix, distCoeffs, rvec, tvec, diamondSquareLength * 0.5f);

                        // This example can display the ARObject on only first detected marker.
                        if (i == 0)
                        {
                            UpdateARObjectTransform(rvec, tvec);
                        }
                    }
            }
        }
예제 #4
0
        public void OnFrameMatAcquired(Mat grayMat, Matrix4x4 projectionMatrix, Matrix4x4 cameraToWorldMatrix, CameraIntrinsics cameraIntrinsics)
        {
            isDetectingInFrameArrivedThread = true;

            DebugUtils.VideoTick();

            Mat   downScaleMat = null;
            float DOWNSCALE_RATIO;

            if (enableDownScale)
            {
                downScaleMat    = imageOptimizationHelper.GetDownScaleMat(grayMat);
                DOWNSCALE_RATIO = imageOptimizationHelper.downscaleRatio;
            }
            else
            {
                downScaleMat    = grayMat;
                DOWNSCALE_RATIO = 1.0f;
            }

            Mat         camMatrix  = null;
            MatOfDouble distCoeffs = null;

            if (useStoredCameraParameters)
            {
                camMatrix  = this.camMatrix;
                distCoeffs = this.distCoeffs;
            }
            else
            {
                camMatrix  = CreateCameraMatrix(cameraIntrinsics.FocalLengthX, cameraIntrinsics.FocalLengthY, cameraIntrinsics.PrincipalPointX / DOWNSCALE_RATIO, cameraIntrinsics.PrincipalPointY / DOWNSCALE_RATIO);
                distCoeffs = new MatOfDouble(cameraIntrinsics.RadialDistK1, cameraIntrinsics.RadialDistK2, cameraIntrinsics.RadialDistK3, cameraIntrinsics.TangentialDistP1, cameraIntrinsics.TangentialDistP2);
            }

            if (enableDetection)
            {
                // Detect markers and estimate Pose
                Aruco.detectMarkers(downScaleMat, dictionary, corners, ids, detectorParams, rejectedCorners, camMatrix, distCoeffs);

                if (applyEstimationPose && ids.total() > 0)
                {
                    Aruco.estimatePoseSingleMarkers(corners, markerLength, camMatrix, distCoeffs, rvecs, tvecs);

                    for (int i = 0; i < ids.total(); i++)
                    {
                        //This example can display ARObject on only first detected marker.
                        if (i == 0)
                        {
                            // Convert to unity pose data.
                            double[] rvecArr = new double[3];
                            rvecs.get(0, 0, rvecArr);
                            double[] tvecArr = new double[3];
                            tvecs.get(0, 0, tvecArr);
                            tvecArr[2] /= DOWNSCALE_RATIO;
                            PoseData poseData = ARUtils.ConvertRvecTvecToPoseData(rvecArr, tvecArr);

                            // Create transform matrix.
                            transformationM = Matrix4x4.TRS(poseData.pos, poseData.rot, Vector3.one);

                            lock (sync)
                            {
                                // Right-handed coordinates system (OpenCV) to left-handed one (Unity)
                                ARM = invertYM * transformationM;

                                // Apply Z-axis inverted matrix.
                                ARM = ARM * invertZM;
                            }

                            hasUpdatedARTransformMatrix = true;

                            break;
                        }
                    }
                }
            }

            Mat rgbMat4preview = null;

            if (displayCameraPreview)
            {
                rgbMat4preview = new Mat();
                Imgproc.cvtColor(downScaleMat, rgbMat4preview, Imgproc.COLOR_GRAY2RGB);

                if (ids.total() > 0)
                {
                    Aruco.drawDetectedMarkers(rgbMat4preview, corners, ids, new Scalar(0, 255, 0));

                    if (applyEstimationPose)
                    {
                        for (int i = 0; i < ids.total(); i++)
                        {
                            using (Mat rvec = new Mat(rvecs, new OpenCVForUnity.CoreModule.Rect(0, i, 1, 1)))
                                using (Mat tvec = new Mat(tvecs, new OpenCVForUnity.CoreModule.Rect(0, i, 1, 1)))
                                {
                                    // In this example we are processing with RGB color image, so Axis-color correspondences are X: blue, Y: green, Z: red. (Usually X: red, Y: green, Z: blue)
                                    Calib3d.drawFrameAxes(rgbMat4preview, camMatrix, distCoeffs, rvec, tvec, markerLength * 0.5f);
                                }
                        }
                    }
                }
            }

            DebugUtils.TrackTick();

            Enqueue(() =>
            {
                if (!webCamTextureToMatHelper.IsPlaying())
                {
                    return;
                }

                if (displayCameraPreview && rgbMat4preview != null)
                {
                    Utils.fastMatToTexture2D(rgbMat4preview, texture);
                    rgbMat4preview.Dispose();
                }

                if (applyEstimationPose)
                {
                    if (hasUpdatedARTransformMatrix)
                    {
                        hasUpdatedARTransformMatrix = false;

                        lock (sync)
                        {
                            // Apply camera transform matrix.
                            ARM = cameraToWorldMatrix * invertZM * ARM;

                            if (enableLerpFilter)
                            {
                                arGameObject.SetMatrix4x4(ARM);
                            }
                            else
                            {
                                ARUtils.SetTransformFromMatrix(arGameObject.transform, ref ARM);
                            }
                        }
                    }
                }

                grayMat.Dispose();
            });

            isDetectingInFrameArrivedThread = false;
        }
예제 #5
0
        private void DetectMarkers()
        {
            Utils.texture2DToMat(imgTexture, rgbMat);
            Debug.Log("imgMat dst ToString " + rgbMat.ToString());

            gameObject.transform.localScale = new Vector3(imgTexture.width, imgTexture.height, 1);
            Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation);

            float width  = rgbMat.width();
            float height = rgbMat.height();

            float imageSizeScale = 1.0f;
            float widthScale     = (float)Screen.width / width;
            float heightScale    = (float)Screen.height / height;

            if (widthScale < heightScale)
            {
                Camera.main.orthographicSize = (width * (float)Screen.height / (float)Screen.width) / 2;
                imageSizeScale = (float)Screen.height / (float)Screen.width;
            }
            else
            {
                Camera.main.orthographicSize = height / 2;
            }


            // set camera parameters.
            int    max_d     = (int)Mathf.Max(width, height);
            double fx        = max_d;
            double fy        = max_d;
            double cx        = width / 2.0f;
            double cy        = height / 2.0f;
            Mat    camMatrix = new Mat(3, 3, CvType.CV_64FC1);

            camMatrix.put(0, 0, fx);
            camMatrix.put(0, 1, 0);
            camMatrix.put(0, 2, cx);
            camMatrix.put(1, 0, 0);
            camMatrix.put(1, 1, fy);
            camMatrix.put(1, 2, cy);
            camMatrix.put(2, 0, 0);
            camMatrix.put(2, 1, 0);
            camMatrix.put(2, 2, 1.0f);
            Debug.Log("camMatrix " + camMatrix.dump());


            MatOfDouble distCoeffs = new MatOfDouble(0, 0, 0, 0);

            Debug.Log("distCoeffs " + distCoeffs.dump());


            // calibration camera matrix values.
            Size   imageSize      = new Size(width * imageSizeScale, height * imageSizeScale);
            double apertureWidth  = 0;
            double apertureHeight = 0;

            double[] fovx           = new double[1];
            double[] fovy           = new double[1];
            double[] focalLength    = new double[1];
            Point    principalPoint = new Point(0, 0);

            double[] aspectratio = new double[1];

            Calib3d.calibrationMatrixValues(camMatrix, imageSize, apertureWidth, apertureHeight, fovx, fovy, focalLength, principalPoint, aspectratio);

            Debug.Log("imageSize " + imageSize.ToString());
            Debug.Log("apertureWidth " + apertureWidth);
            Debug.Log("apertureHeight " + apertureHeight);
            Debug.Log("fovx " + fovx [0]);
            Debug.Log("fovy " + fovy [0]);
            Debug.Log("focalLength " + focalLength [0]);
            Debug.Log("principalPoint " + principalPoint.ToString());
            Debug.Log("aspectratio " + aspectratio [0]);


            // To convert the difference of the FOV value of the OpenCV and Unity.
            double fovXScale = (2.0 * Mathf.Atan((float)(imageSize.width / (2.0 * fx)))) / (Mathf.Atan2((float)cx, (float)fx) + Mathf.Atan2((float)(imageSize.width - cx), (float)fx));
            double fovYScale = (2.0 * Mathf.Atan((float)(imageSize.height / (2.0 * fy)))) / (Mathf.Atan2((float)cy, (float)fy) + Mathf.Atan2((float)(imageSize.height - cy), (float)fy));

            Debug.Log("fovXScale " + fovXScale);
            Debug.Log("fovYScale " + fovYScale);


            // Adjust Unity Camera FOV https://github.com/opencv/opencv/commit/8ed1945ccd52501f5ab22bdec6aa1f91f1e2cfd4
            if (widthScale < heightScale)
            {
                arCamera.fieldOfView = (float)(fovx [0] * fovXScale);
            }
            else
            {
                arCamera.fieldOfView = (float)(fovy [0] * fovYScale);
            }
            // Display objects near the camera.
            arCamera.nearClipPlane = 0.01f;



            Mat        ids             = new Mat();
            List <Mat> corners         = new List <Mat> ();
            List <Mat> rejectedCorners = new List <Mat> ();
            Mat        rvecs           = new Mat();
            Mat        tvecs           = new Mat();
            Mat        rotMat          = new Mat(3, 3, CvType.CV_64FC1);

            DetectorParameters detectorParams = DetectorParameters.create();
            Dictionary         dictionary     = Aruco.getPredefinedDictionary((int)dictionaryId);


            // detect markers.
            Aruco.detectMarkers(rgbMat, dictionary, corners, ids, detectorParams, rejectedCorners, camMatrix, distCoeffs);

            // if at least one marker detected
            if (ids.total() > 0)
            {
                Aruco.drawDetectedMarkers(rgbMat, corners, ids, new Scalar(0, 255, 0));

                // estimate pose.
                if (applyEstimationPose)
                {
                    Aruco.estimatePoseSingleMarkers(corners, markerLength, camMatrix, distCoeffs, rvecs, tvecs);

                    for (int i = 0; i < ids.total(); i++)
                    {
                        using (Mat rvec = new Mat(rvecs, new OpenCVForUnity.CoreModule.Rect(0, i, 1, 1)))
                            using (Mat tvec = new Mat(tvecs, new OpenCVForUnity.CoreModule.Rect(0, i, 1, 1))) {
                                // In this example we are processing with RGB color image, so Axis-color correspondences are X: blue, Y: green, Z: red. (Usually X: red, Y: green, Z: blue)
                                Calib3d.drawFrameAxes(rgbMat, camMatrix, distCoeffs, rvec, tvec, markerLength * 0.5f);
                            }

                        // This example can display the ARObject on only first detected marker.
                        if (i == 0)
                        {
                            // Get translation vector
                            double[] tvecArr = tvecs.get(i, 0);

                            // Get rotation vector
                            double[] rvecArr = rvecs.get(i, 0);
                            Mat      rvec    = new Mat(3, 1, CvType.CV_64FC1);
                            rvec.put(0, 0, rvecArr);

                            // Convert rotation vector to rotation matrix.
                            Calib3d.Rodrigues(rvec, rotMat);
                            double[] rotMatArr = new double[rotMat.total()];
                            rotMat.get(0, 0, rotMatArr);

                            // Convert OpenCV camera extrinsic parameters to Unity Matrix4x4.
                            Matrix4x4 transformationM = new Matrix4x4();  // from OpenCV
                            transformationM.SetRow(0, new Vector4((float)rotMatArr [0], (float)rotMatArr [1], (float)rotMatArr [2], (float)tvecArr [0]));
                            transformationM.SetRow(1, new Vector4((float)rotMatArr [3], (float)rotMatArr [4], (float)rotMatArr [5], (float)tvecArr [1]));
                            transformationM.SetRow(2, new Vector4((float)rotMatArr [6], (float)rotMatArr [7], (float)rotMatArr [8], (float)tvecArr [2]));
                            transformationM.SetRow(3, new Vector4(0, 0, 0, 1));
                            Debug.Log("transformationM " + transformationM.ToString());

                            Matrix4x4 invertYM = Matrix4x4.TRS(Vector3.zero, Quaternion.identity, new Vector3(1, -1, 1));
                            Debug.Log("invertYM " + invertYM.ToString());

                            // right-handed coordinates system (OpenCV) to left-handed one (Unity)
                            // https://stackoverflow.com/questions/30234945/change-handedness-of-a-row-major-4x4-transformation-matrix
                            Matrix4x4 ARM = invertYM * transformationM * invertYM;

                            if (shouldMoveARCamera)
                            {
                                ARM = arGameObject.transform.localToWorldMatrix * ARM.inverse;

                                Debug.Log("ARM " + ARM.ToString());

                                ARUtils.SetTransformFromMatrix(arCamera.transform, ref ARM);
                            }
                            else
                            {
                                ARM = arCamera.transform.localToWorldMatrix * ARM;

                                Debug.Log("ARM " + ARM.ToString());

                                ARUtils.SetTransformFromMatrix(arGameObject.transform, ref ARM);
                            }
                        }
                    }
                }
            }

            if (showRejectedCorners && rejectedCorners.Count > 0)
            {
                Aruco.drawDetectedMarkers(rgbMat, rejectedCorners, new Mat(), new Scalar(255, 0, 0));
            }

            Utils.matToTexture2D(rgbMat, texture);
        }