// Solve a line segment using barycentric coordinates. // // p = a1 * w1 + a2 * w2 // a1 + a2 = 1 // // The vector from the origin to the closest point on the line is // perpendicular to the line. // e12 = w2 - w1 // dot(p, e) = 0 // a1 * dot(w1, e) + a2 * dot(w2, e) = 0 // // 2-by-2 linear system // [1 1 ][a1] = [1] // [w1.e12 w2.e12][a2] = [0] // // Define // d12_1 = dot(w2, e12) // d12_2 = -dot(w1, e12) // d12 = d12_1 + d12_2 // // Solution // a1 = d12_1 / d12 // a2 = d12_2 / d12 internal void Solve2() { Vector2 w1 = V[0].W; Vector2 w2 = V[1].W; Vector2 e12 = w2 - w1; // w1 region float d12_2 = -Vector2.Dot(w1, e12); if (d12_2 <= 0.0f) { // a2 <= 0, so we clamp it to 0 SimplexVertex v0 = V[0]; v0.A = 1.0f; V[0] = v0; Count = 1; return; } // w2 region float d12_1 = Vector2.Dot(w2, e12); if (d12_1 <= 0.0f) { // a1 <= 0, so we clamp it to 0 SimplexVertex v1 = V[1]; v1.A = 1.0f; V[1] = v1; Count = 1; V[0] = V[1]; return; } // Must be in e12 region. float inv_d12 = 1.0f / (d12_1 + d12_2); SimplexVertex v0_2 = V[0]; SimplexVertex v1_2 = V[1]; v0_2.A = d12_1 * inv_d12; v1_2.A = d12_2 * inv_d12; V[0] = v0_2; V[1] = v1_2; Count = 2; }
public static void ComputeDistance(out DistanceOutput output, out SimplexCache cache, DistanceInput input) { cache = new SimplexCache(); if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled { ++GJKCalls; } // Initialize the simplex. Simplex simplex = new Simplex(); simplex.ReadCache(ref cache, ref input.ProxyA, ref input.TransformA, ref input.ProxyB, ref input.TransformB); // These store the vertices of the last simplex so that we // can check for duplicates and prevent cycling. FixedArray3 <int> saveA = new FixedArray3 <int>(); FixedArray3 <int> saveB = new FixedArray3 <int>(); //float distanceSqr1 = Settings.MaxFloat; // Main iteration loop. int iter = 0; while (iter < Settings.MaxGJKIterations) { // Copy simplex so we can identify duplicates. int saveCount = simplex.Count; for (int i = 0; i < saveCount; ++i) { saveA[i] = simplex.V[i].IndexA; saveB[i] = simplex.V[i].IndexB; } switch (simplex.Count) { case 1: break; case 2: simplex.Solve2(); break; case 3: simplex.Solve3(); break; default: Debug.Assert(false); break; } // If we have 3 points, then the origin is in the corresponding triangle. if (simplex.Count == 3) { break; } //FPE: This code was not used anyway. // Compute closest point. //Vector2 p = simplex.GetClosestPoint(); //float distanceSqr2 = p.LengthSquared(); // Ensure progress //if (distanceSqr2 >= distanceSqr1) //{ //break; //} //distanceSqr1 = distanceSqr2; // Get search direction. Vector2 d = simplex.GetSearchDirection(); // Ensure the search direction is numerically fit. if (d.LengthSquared() < Settings.Epsilon * Settings.Epsilon) { // The origin is probably contained by a line segment // or triangle. Thus the shapes are overlapped. // We can't return zero here even though there may be overlap. // In case the simplex is a point, segment, or triangle it is difficult // to determine if the origin is contained in the CSO or very close to it. break; } // Compute a tentative new simplex vertex using support points. SimplexVertex vertex = simplex.V[simplex.Count]; vertex.IndexA = input.ProxyA.GetSupport(-Complex.Divide(ref d, ref input.TransformA.q)); vertex.WA = Transform.Multiply(input.ProxyA.Vertices[vertex.IndexA], ref input.TransformA); vertex.IndexB = input.ProxyB.GetSupport(Complex.Divide(ref d, ref input.TransformB.q)); vertex.WB = Transform.Multiply(input.ProxyB.Vertices[vertex.IndexB], ref input.TransformB); vertex.W = vertex.WB - vertex.WA; simplex.V[simplex.Count] = vertex; // Iteration count is equated to the number of support point calls. ++iter; if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled { ++GJKIters; } // Check for duplicate support points. This is the main termination criteria. bool duplicate = false; for (int i = 0; i < saveCount; ++i) { if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i]) { duplicate = true; break; } } // If we found a duplicate support point we must exit to avoid cycling. if (duplicate) { break; } // New vertex is ok and needed. ++simplex.Count; } if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled { GJKMaxIters = Math.Max(GJKMaxIters, iter); } // Prepare output. simplex.GetWitnessPoints(out output.PointA, out output.PointB); output.Distance = (output.PointA - output.PointB).Length(); output.Iterations = iter; // Cache the simplex. simplex.WriteCache(ref cache); // Apply radii if requested. if (input.UseRadii) { float rA = input.ProxyA.Radius; float rB = input.ProxyB.Radius; if (output.Distance > rA + rB && output.Distance > Settings.Epsilon) { // Shapes are still no overlapped. // Move the witness points to the outer surface. output.Distance -= rA + rB; Vector2 normal = output.PointB - output.PointA; normal.Normalize(); output.PointA += rA * normal; output.PointB -= rB * normal; } else { // Shapes are overlapped when radii are considered. // Move the witness points to the middle. Vector2 p = 0.5f * (output.PointA + output.PointB); output.PointA = p; output.PointB = p; output.Distance = 0.0f; } } }
// Possible regions: // - points[2] // - edge points[0]-points[2] // - edge points[1]-points[2] // - inside the triangle internal void Solve3() { Vector2 w1 = V[0].W; Vector2 w2 = V[1].W; Vector2 w3 = V[2].W; // Edge12 // [1 1 ][a1] = [1] // [w1.e12 w2.e12][a2] = [0] // a3 = 0 Vector2 e12 = w2 - w1; float w1e12 = Vector2.Dot(w1, e12); float w2e12 = Vector2.Dot(w2, e12); float d12_1 = w2e12; float d12_2 = -w1e12; // Edge13 // [1 1 ][a1] = [1] // [w1.e13 w3.e13][a3] = [0] // a2 = 0 Vector2 e13 = w3 - w1; float w1e13 = Vector2.Dot(w1, e13); float w3e13 = Vector2.Dot(w3, e13); float d13_1 = w3e13; float d13_2 = -w1e13; // Edge23 // [1 1 ][a2] = [1] // [w2.e23 w3.e23][a3] = [0] // a1 = 0 Vector2 e23 = w3 - w2; float w2e23 = Vector2.Dot(w2, e23); float w3e23 = Vector2.Dot(w3, e23); float d23_1 = w3e23; float d23_2 = -w2e23; // Triangle123 float n123 = MathUtils.Cross(ref e12, ref e13); float d123_1 = n123 * MathUtils.Cross(ref w2, ref w3); float d123_2 = n123 * MathUtils.Cross(ref w3, ref w1); float d123_3 = n123 * MathUtils.Cross(ref w1, ref w2); // w1 region if (d12_2 <= 0.0f && d13_2 <= 0.0f) { SimplexVertex v0_1 = V[0]; v0_1.A = 1.0f; V[0] = v0_1; Count = 1; return; } // e12 if (d12_1 > 0.0f && d12_2 > 0.0f && d123_3 <= 0.0f) { float inv_d12 = 1.0f / (d12_1 + d12_2); SimplexVertex v0_2 = V[0]; SimplexVertex v1_2 = V[1]; v0_2.A = d12_1 * inv_d12; v1_2.A = d12_2 * inv_d12; V[0] = v0_2; V[1] = v1_2; Count = 2; return; } // e13 if (d13_1 > 0.0f && d13_2 > 0.0f && d123_2 <= 0.0f) { float inv_d13 = 1.0f / (d13_1 + d13_2); SimplexVertex v0_3 = V[0]; SimplexVertex v2_3 = V[2]; v0_3.A = d13_1 * inv_d13; v2_3.A = d13_2 * inv_d13; V[0] = v0_3; V[2] = v2_3; Count = 2; V[1] = V[2]; return; } // w2 region if (d12_1 <= 0.0f && d23_2 <= 0.0f) { SimplexVertex v1_4 = V[1]; v1_4.A = 1.0f; V[1] = v1_4; Count = 1; V[0] = V[1]; return; } // w3 region if (d13_1 <= 0.0f && d23_1 <= 0.0f) { SimplexVertex v2_5 = V[2]; v2_5.A = 1.0f; V[2] = v2_5; Count = 1; V[0] = V[2]; return; } // e23 if (d23_1 > 0.0f && d23_2 > 0.0f && d123_1 <= 0.0f) { float inv_d23 = 1.0f / (d23_1 + d23_2); SimplexVertex v1_6 = V[1]; SimplexVertex v2_6 = V[2]; v1_6.A = d23_1 * inv_d23; v2_6.A = d23_2 * inv_d23; V[1] = v1_6; V[2] = v2_6; Count = 2; V[0] = V[2]; return; } // Must be in triangle123 float inv_d123 = 1.0f / (d123_1 + d123_2 + d123_3); SimplexVertex v0_7 = V[0]; SimplexVertex v1_7 = V[1]; SimplexVertex v2_7 = V[2]; v0_7.A = d123_1 * inv_d123; v1_7.A = d123_2 * inv_d123; v2_7.A = d123_3 * inv_d123; V[0] = v0_7; V[1] = v1_7; V[2] = v2_7; Count = 3; }