/// <summary> /// Searches for the closest points in a hyper-sphere around the given center. /// </summary> /// <param name="center">The center of the hyper-sphere</param> /// <param name="radius">The radius of the hyper-sphere</param> /// <param name="neighboors">The number of neighbors to return.</param> /// <returns>The specified number of closest points in the hyper-sphere</returns> public Tuple <TDimension[], TNode>[] RadialSearch(TDimension[] center, double radius, int neighboors = -1) { var nearestNeighbors = new BoundedPriorityList <int, double>(this.Count); if (neighboors == -1) { this.SearchForNearestNeighbors( 0, center, HyperRect <TDimension> .Infinite(this.Dimensions, this.MaxValue, this.MinValue), 0, nearestNeighbors, radius); } else { this.SearchForNearestNeighbors( 0, center, HyperRect <TDimension> .Infinite(this.Dimensions, this.MaxValue, this.MinValue), 0, nearestNeighbors, radius); } return(nearestNeighbors.ToResultSet(this)); }
/// <summary> /// Finds the nearest neighbors in the <see cref="KDTree{TDimension,TNode}"/> of the given <paramref name="point"/>. /// </summary> /// <param name="point">The point whose neighbors we search for.</param> /// <param name="neighbors">The number of neighbors to look for.</param> /// <returns>The</returns> public Tuple <TDimension[], TNode>[] NearestNeighbors(TDimension[] point, int neighbors) { var nearestNeighborList = new BoundedPriorityList <int, double>(neighbors, true); var rect = HyperRect <TDimension> .Infinite(this.Dimensions, this.MaxValue, this.MinValue); this.SearchForNearestNeighbors(0, point, rect, 0, nearestNeighborList, double.MaxValue); return(nearestNeighborList.ToResultSet(this)); }
/// <summary> /// Clones the <see cref="HyperRect{T}"/>. /// </summary> /// <returns>A clone of the <see cref="HyperRect{T}"/></returns> public HyperRect <T> Clone() { // For a discussion of why we don't implement ICloneable // see http://stackoverflow.com/questions/536349/why-no-icloneablet var rect = new HyperRect <T>(); rect.MinPoint = this.MinPoint; rect.MaxPoint = this.MaxPoint; return(rect); }
/// <summary> /// A top-down recursive method to find the nearest neighbors of a given point. /// </summary> /// <param name="nodeIndex">The index of the node for the current recursion branch.</param> /// <param name="target">The point whose neighbors we are trying to find.</param> /// <param name="rect">The <see cref="HyperRect{T}"/> containing the possible nearest neighbors.</param> /// <param name="dimension">The current splitting dimension for this recursion branch.</param> /// <param name="nearestNeighbors">The <see cref="BoundedPriorityList{TElement,TPriority}"/> containing the nearest neighbors already discovered.</param> /// <param name="maxSearchRadiusSquared">The squared radius of the current largest distance to search from the <paramref name="target"/></param> private void SearchForNearestNeighbors( int nodeIndex, TDimension[] target, HyperRect <TDimension> rect, int dimension, BoundedPriorityList <int, double> nearestNeighbors, double maxSearchRadiusSquared) { if (this.InternalPointArray.Length <= nodeIndex || nodeIndex < 0 || this.InternalPointArray[nodeIndex] == null) { return; } // Work out the current dimension var dim = dimension % this.Dimensions; // Split our hyper-rectangle into 2 sub rectangles along the current // node's point on the current dimension var leftRect = rect.Clone(); leftRect.MaxPoint[dim] = this.InternalPointArray[nodeIndex][dim]; var rightRect = rect.Clone(); rightRect.MinPoint[dim] = this.InternalPointArray[nodeIndex][dim]; // Determine which side the target resides in var compare = target[dim].CompareTo(this.InternalPointArray[nodeIndex][dim]); var nearerRect = compare <= 0 ? leftRect : rightRect; var furtherRect = compare <= 0 ? rightRect : leftRect; var nearerNode = compare <= 0 ? LeftChildIndex(nodeIndex) : RightChildIndex(nodeIndex); var furtherNode = compare <= 0 ? RightChildIndex(nodeIndex) : LeftChildIndex(nodeIndex); // Move down into the nearer branch this.SearchForNearestNeighbors( nearerNode, target, nearerRect, dimension + 1, nearestNeighbors, maxSearchRadiusSquared); // Walk down into the further branch but only if our capacity hasn't been reached // OR if there's a region in the further rectangle that's closer to the target than our // current furtherest nearest neighbor var closestPointInFurtherRect = furtherRect.GetClosestPoint(target); var distanceSquaredToTarget = this.Metric(closestPointInFurtherRect, target); if (distanceSquaredToTarget.CompareTo(maxSearchRadiusSquared) <= 0) { if (nearestNeighbors.IsFull) { if (distanceSquaredToTarget.CompareTo(nearestNeighbors.MaxPriority) < 0) { this.SearchForNearestNeighbors( furtherNode, target, furtherRect, dimension + 1, nearestNeighbors, maxSearchRadiusSquared); } } else { this.SearchForNearestNeighbors( furtherNode, target, furtherRect, dimension + 1, nearestNeighbors, maxSearchRadiusSquared); } } // Try to add the current node to our nearest neighbors list distanceSquaredToTarget = this.Metric(this.InternalPointArray[nodeIndex], target); if (distanceSquaredToTarget.CompareTo(maxSearchRadiusSquared) <= 0) { nearestNeighbors.Add(nodeIndex, distanceSquaredToTarget); } }