public NeatEvolutionAlgorithm<NeatGenome> CreateEvolutionAlgorithm(IGenomeFactory<NeatGenome> genomeFactory, List<NeatGenome> genomeList, IGenomeListEvaluator<NeatGenome> eval = null) { // Create distance metric. Mismatched genes have a fixed distance of 10; for matched genes the distance is their weigth difference. IDistanceMetric distanceMetric = new ManhattanDistanceMetric(1.0, 0.0, 10.0); ISpeciationStrategy<NeatGenome> speciationStrategy = new ParallelKMeansClusteringStrategy<NeatGenome>(distanceMetric, _parallelOptions); // Create complexity regulation strategy. IComplexityRegulationStrategy complexityRegulationStrategy = new NullComplexityRegulationStrategy();// ExperimentUtils.CreateComplexityRegulationStrategy(_complexityRegulationStr, _complexityThreshold); // Create the evolution algorithm. NeatEvolutionAlgorithm<NeatGenome> ea = new NeatEvolutionAlgorithm<NeatGenome>(_eaParams, speciationStrategy, complexityRegulationStrategy); // Create the MC evaluator PasswordCrackingEvaluator.Passwords = _passwords; // Create genome decoder. IGenomeDecoder<NeatGenome, MarkovChain> genomeDecoder = CreateGenomeDecoder(); // If we're running specially on Condor, skip this if (eval == null) { _evaluator = new PasswordCrackingEvaluator(_guesses, Hashed); // Create a genome list evaluator. This packages up the genome decoder with the genome evaluator. // IGenomeListEvaluator<NeatGenome> innerEvaluator = new ParallelGenomeListEvaluator<NeatGenome, MarkovChain>(genomeDecoder, _evaluator, _parallelOptions); IGenomeListEvaluator<NeatGenome> innerEvaluator = new ParallelNEATGenomeListEvaluator<NeatGenome, MarkovChain>(genomeDecoder, _evaluator, this); /* // Wrap the list evaluator in a 'selective' evaulator that will only evaluate new genomes. That is, we skip re-evaluating any genomes // that were in the population in previous generations (elite genomes). This is determiend by examining each genome's evaluation info object. IGenomeListEvaluator<NeatGenome> selectiveEvaluator = new SelectiveGenomeListEvaluator<NeatGenome>( innerEvaluator, SelectiveGenomeListEvaluator<NeatGenome>.CreatePredicate_OnceOnly()); */ // Initialize the evolution algorithm. ea.Initialize(innerEvaluator, genomeFactory, genomeList); } else // Initialize the evolution algorithm. ea.Initialize(eval, genomeFactory, genomeList); // Finished. Return the evolution algorithm return ea; }
/// <summary> /// Create and return a NeatEvolutionAlgorithm object ready for running the NEAT algorithm/search. Various sub-parts /// of the algorithm are also constructed and connected up. /// This overload accepts a pre-built genome2 population and their associated/parent genome2 factory. /// </summary> public NeatEvolutionAlgorithm<NeatGenome> CreateEvolutionAlgorithm(IGenomeFactory<NeatGenome> genomeFactory, List<NeatGenome> genomeList) { // Create distance metric. Mismatched genes have a fixed distance of 10; for matched genes the distance is their weigth difference. IDistanceMetric distanceMetric = new ManhattanDistanceMetric(1.0, 0.0, 10.0); ISpeciationStrategy<NeatGenome> speciationStrategy = new ParallelKMeansClusteringStrategy<NeatGenome>(distanceMetric, new ParallelOptions()); // Create complexity regulation strategy. IComplexityRegulationStrategy complexityRegulationStrategy = new NullComplexityRegulationStrategy();// ExperimentUtils.CreateComplexityRegulationStrategy(_complexityRegulationStr, _complexityThreshold); // Create the evolution algorithm. NeatEvolutionAlgorithm<NeatGenome> ea = new NeatEvolutionAlgorithm<NeatGenome>(EvoParameters, speciationStrategy, complexityRegulationStrategy); // Create a genome list evaluator. This packages up the genome decoder with the phenome evaluator. if(Evaluator == null) Evaluator = CreateEvaluator(); // Initialize the evolution algorithm. ea.Initialize(Evaluator, genomeFactory, genomeList); // Finished. Return the evolution algorithm return ea; }
/// <summary> /// Create and return a NeatEvolutionAlgorithm object ready for running the NEAT algorithm/search. Various sub-parts /// of the algorithm are also constructed and connected up. /// This overload accepts a pre-built genome2 population and their associated/parent genome2 factory. /// </summary> public NeatEvolutionAlgorithm<NeatGenome> CreateEvolutionAlgorithm(IGenomeFactory<NeatGenome> genomeFactory, List<NeatGenome> genomeList) { // Create distance metric. Mismatched genes have a fixed distance of 10; for matched genes the distance is their weigth difference. IDistanceMetric distanceMetric = new ManhattanDistanceMetric(1.0, 0.0, 10.0); ISpeciationStrategy<NeatGenome> speciationStrategy = new ParallelKMeansClusteringStrategy<NeatGenome>(distanceMetric, new ParallelOptions()); // Create complexity regulation strategy. IComplexityRegulationStrategy complexityRegulationStrategy = new NullComplexityRegulationStrategy();// ExperimentUtils.CreateComplexityRegulationStrategy(_complexityRegulationStr, _complexityThreshold); // Create the evolution algorithm. NeatEvolutionAlgorithm<NeatGenome> ea = new NeatEvolutionAlgorithm<NeatGenome>(_eaParams, speciationStrategy, complexityRegulationStrategy); // Create genome decoder. IGenomeDecoder<NeatGenome, IBlackBox> genomeDecoder = CreateGenomeDecoder(); // Create a genome list evaluator. This packages up the genome decoder with the phenome evaluator. _evaluator = new ForagingEvaluator<NeatGenome>(genomeDecoder, _world, _agentType, _navigationEnabled, _hidingEnabled) { MaxTimeSteps = _timeStepsPerGeneration, EvoParadigm = _paradigm, MemParadigm = _memory, GenerationsPerMemorySize = _memGens, MaxMemorySize = _maxMemorySize, TeachParadigm = _teaching, TrialId = TrialId, PredatorCount = _predCount, PredatorDistribution = PredatorDistribution, PredatorTypes = _predTypes, PredatorGenerations = _predGens, DistinguishPredators = _distinguishPreds, LogDiversity = _logDiversity }; // Initialize the evolution algorithm. ea.Initialize(_evaluator, genomeFactory, genomeList); // Finished. Return the evolution algorithm return ea; }