コード例 #1
0
 internal void WriteCache(ref SimplexCache cache)
 {
     cache.Metric = GetMetric();
     cache.Count  = (UInt16)Count;
     for (int i = 0; i < Count; ++i)
     {
         cache.IndexA[i] = (byte)(V[i].IndexA);
         cache.IndexB[i] = (byte)(V[i].IndexB);
     }
 }
コード例 #2
0
        internal void ReadCache(ref SimplexCache cache, ref DistanceProxy proxyA, ref Transform transformA, ref DistanceProxy proxyB, ref Transform transformB)
        {
            Debug.Assert(cache.Count <= 3);

            // Copy data from cache.
            Count = cache.Count;
            for (int i = 0; i < Count; ++i)
            {
                SimplexVertex v = V[i];
                v.IndexA = cache.IndexA[i];
                v.IndexB = cache.IndexB[i];
                Vector2 wALocal = proxyA.Vertices[v.IndexA];
                Vector2 wBLocal = proxyB.Vertices[v.IndexB];
                v.WA = Transform.Multiply(ref wALocal, ref transformA);
                v.WB = Transform.Multiply(ref wBLocal, ref transformB);
                v.W  = v.WB - v.WA;
                v.A  = 0.0f;
                V[i] = v;
            }

            // Compute the new simplex metric, if it is substantially different than
            // old metric then flush the simplex.
            if (Count > 1)
            {
                float metric1 = cache.Metric;
                float metric2 = GetMetric();
                if (metric2 < 0.5f * metric1 || 2.0f * metric1 < metric2 || metric2 < Settings.Epsilon)
                {
                    // Reset the simplex.
                    Count = 0;
                }
            }

            // If the cache is empty or invalid ...
            if (Count == 0)
            {
                SimplexVertex v = V[0];
                v.IndexA = 0;
                v.IndexB = 0;
                Vector2 wALocal = proxyA.Vertices[0];
                Vector2 wBLocal = proxyB.Vertices[0];
                v.WA  = Transform.Multiply(ref wALocal, ref transformA);
                v.WB  = Transform.Multiply(ref wBLocal, ref transformB);
                v.W   = v.WB - v.WA;
                v.A   = 1.0f;
                V[0]  = v;
                Count = 1;
            }
        }
コード例 #3
0
ファイル: TimeOfImpact.cs プロジェクト: RisaI/mff-totem
        public static void Set(ref SimplexCache cache, ref DistanceProxy proxyA, ref Sweep sweepA, ref DistanceProxy proxyB, ref Sweep sweepB, float t1)
        {
            _localPoint = Vector2.Zero;
            _proxyA     = proxyA;
            _proxyB     = proxyB;
            int count = cache.Count;

            Debug.Assert(0 < count && count < 3);

            _sweepA = sweepA;
            _sweepB = sweepB;

            Transform xfA, xfB;

            _sweepA.GetTransform(out xfA, t1);
            _sweepB.GetTransform(out xfB, t1);

            if (count == 1)
            {
                _type = SeparationFunctionType.Points;
                Vector2 localPointA = _proxyA.Vertices[cache.IndexA[0]];
                Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]];
                Vector2 pointA      = Transform.Multiply(ref localPointA, ref xfA);
                Vector2 pointB      = Transform.Multiply(ref localPointB, ref xfB);
                _axis = pointB - pointA;
                _axis.Normalize();
            }
            else if (cache.IndexA[0] == cache.IndexA[1])
            {
                // Two points on B and one on A.
                _type = SeparationFunctionType.FaceB;
                Vector2 localPointB1 = proxyB.Vertices[cache.IndexB[0]];
                Vector2 localPointB2 = proxyB.Vertices[cache.IndexB[1]];

                Vector2 a = localPointB2 - localPointB1;
                _axis = new Vector2(a.Y, -a.X);
                _axis.Normalize();
                Vector2 normal = Complex.Multiply(ref _axis, ref xfB.q);

                _localPoint = 0.5f * (localPointB1 + localPointB2);
                Vector2 pointB = Transform.Multiply(ref _localPoint, ref xfB);

                Vector2 localPointA = proxyA.Vertices[cache.IndexA[0]];
                Vector2 pointA      = Transform.Multiply(ref localPointA, ref xfA);

                float s = Vector2.Dot(pointA - pointB, normal);
                if (s < 0.0f)
                {
                    _axis = -_axis;
                }
            }
            else
            {
                // Two points on A and one or two points on B.
                _type = SeparationFunctionType.FaceA;
                Vector2 localPointA1 = _proxyA.Vertices[cache.IndexA[0]];
                Vector2 localPointA2 = _proxyA.Vertices[cache.IndexA[1]];

                Vector2 a = localPointA2 - localPointA1;
                _axis = new Vector2(a.Y, -a.X);
                _axis.Normalize();
                Vector2 normal = Complex.Multiply(ref _axis, ref xfA.q);

                _localPoint = 0.5f * (localPointA1 + localPointA2);
                Vector2 pointA = Transform.Multiply(ref _localPoint, ref xfA);

                Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]];
                Vector2 pointB      = Transform.Multiply(ref localPointB, ref xfB);

                float s = Vector2.Dot(pointB - pointA, normal);
                if (s < 0.0f)
                {
                    _axis = -_axis;
                }
            }
        }
コード例 #4
0
        public static void ComputeDistance(out DistanceOutput output, out SimplexCache cache, DistanceInput input)
        {
            cache = new SimplexCache();

            if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled
            {
                ++GJKCalls;
            }

            // Initialize the simplex.
            Simplex simplex = new Simplex();

            simplex.ReadCache(ref cache, ref input.ProxyA, ref input.TransformA, ref input.ProxyB, ref input.TransformB);

            // These store the vertices of the last simplex so that we
            // can check for duplicates and prevent cycling.
            FixedArray3 <int> saveA = new FixedArray3 <int>();
            FixedArray3 <int> saveB = new FixedArray3 <int>();

            //float distanceSqr1 = Settings.MaxFloat;

            // Main iteration loop.
            int iter = 0;

            while (iter < Settings.MaxGJKIterations)
            {
                // Copy simplex so we can identify duplicates.
                int saveCount = simplex.Count;
                for (int i = 0; i < saveCount; ++i)
                {
                    saveA[i] = simplex.V[i].IndexA;
                    saveB[i] = simplex.V[i].IndexB;
                }

                switch (simplex.Count)
                {
                case 1:
                    break;

                case 2:
                    simplex.Solve2();
                    break;

                case 3:
                    simplex.Solve3();
                    break;

                default:
                    Debug.Assert(false);
                    break;
                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex.Count == 3)
                {
                    break;
                }

                //FPE: This code was not used anyway.
                // Compute closest point.
                //Vector2 p = simplex.GetClosestPoint();
                //float distanceSqr2 = p.LengthSquared();

                // Ensure progress
                //if (distanceSqr2 >= distanceSqr1)
                //{
                //break;
                //}
                //distanceSqr1 = distanceSqr2;

                // Get search direction.
                Vector2 d = simplex.GetSearchDirection();

                // Ensure the search direction is numerically fit.
                if (d.LengthSquared() < Settings.Epsilon * Settings.Epsilon)
                {
                    // The origin is probably contained by a line segment
                    // or triangle. Thus the shapes are overlapped.

                    // We can't return zero here even though there may be overlap.
                    // In case the simplex is a point, segment, or triangle it is difficult
                    // to determine if the origin is contained in the CSO or very close to it.
                    break;
                }

                // Compute a tentative new simplex vertex using support points.
                SimplexVertex vertex = simplex.V[simplex.Count];
                vertex.IndexA = input.ProxyA.GetSupport(-Complex.Divide(ref d, ref input.TransformA.q));
                vertex.WA     = Transform.Multiply(input.ProxyA.Vertices[vertex.IndexA], ref input.TransformA);

                vertex.IndexB            = input.ProxyB.GetSupport(Complex.Divide(ref d, ref input.TransformB.q));
                vertex.WB                = Transform.Multiply(input.ProxyB.Vertices[vertex.IndexB], ref input.TransformB);
                vertex.W                 = vertex.WB - vertex.WA;
                simplex.V[simplex.Count] = vertex;

                // Iteration count is equated to the number of support point calls.
                ++iter;

                if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled
                {
                    ++GJKIters;
                }

                // Check for duplicate support points. This is the main termination criteria.
                bool duplicate = false;
                for (int i = 0; i < saveCount; ++i)
                {
                    if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i])
                    {
                        duplicate = true;
                        break;
                    }
                }

                // If we found a duplicate support point we must exit to avoid cycling.
                if (duplicate)
                {
                    break;
                }

                // New vertex is ok and needed.
                ++simplex.Count;
            }

            if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled
            {
                GJKMaxIters = Math.Max(GJKMaxIters, iter);
            }

            // Prepare output.
            simplex.GetWitnessPoints(out output.PointA, out output.PointB);
            output.Distance   = (output.PointA - output.PointB).Length();
            output.Iterations = iter;

            // Cache the simplex.
            simplex.WriteCache(ref cache);

            // Apply radii if requested.
            if (input.UseRadii)
            {
                float rA = input.ProxyA.Radius;
                float rB = input.ProxyB.Radius;

                if (output.Distance > rA + rB && output.Distance > Settings.Epsilon)
                {
                    // Shapes are still no overlapped.
                    // Move the witness points to the outer surface.
                    output.Distance -= rA + rB;
                    Vector2 normal = output.PointB - output.PointA;
                    normal.Normalize();
                    output.PointA += rA * normal;
                    output.PointB -= rB * normal;
                }
                else
                {
                    // Shapes are overlapped when radii are considered.
                    // Move the witness points to the middle.
                    Vector2 p = 0.5f * (output.PointA + output.PointB);
                    output.PointA   = p;
                    output.PointB   = p;
                    output.Distance = 0.0f;
                }
            }
        }