public void BivariateNullAssociation() { Random rng = new Random(314159265); // Create sample sets for our three test statisics Sample PS = new Sample(); Sample SS = new Sample(); Sample KS = new Sample(); // variables to hold the claimed distribution of teach test statistic Distribution PD = null; Distribution SD = null; Distribution KD = null; // generate a large number of bivariate samples and conduct our three tests on each for (int j = 0; j < 100; j++) { BivariateSample S = new BivariateSample(); // sample size should be large so that asymptotic assumptions are justified for (int i = 0; i < 100; i++) { double x = rng.NextDouble(); double y = rng.NextDouble(); S.Add(x, y); } TestResult PR = S.PearsonRTest(); PS.Add(PR.Statistic); PD = PR.Distribution; TestResult SR = S.SpearmanRhoTest(); SS.Add(SR.Statistic); SD = SR.Distribution; TestResult KR = S.KendallTauTest(); KS.Add(KR.Statistic); KD = KR.Distribution; } // do KS to test whether the samples follow the claimed distributions //Console.WriteLine(PS.KolmogorovSmirnovTest(PD).LeftProbability); //Console.WriteLine(SS.KolmogorovSmirnovTest(SD).LeftProbability); //Console.WriteLine(KS.KolmogorovSmirnovTest(KD).LeftProbability); Assert.IsTrue(PS.KolmogorovSmirnovTest(PD).LeftProbability < 0.95); Assert.IsTrue(SS.KolmogorovSmirnovTest(SD).LeftProbability < 0.95); Assert.IsTrue(KS.KolmogorovSmirnovTest(KD).LeftProbability < 0.95); }
public void SpearmanNullDistributionTest() { // pick independent distributions for x and y, which needn't be normal and needn't be related Distribution xDistrubtion = new UniformDistribution(); Distribution yDistribution = new CauchyDistribution(); Random rng = new Random(1); // generate bivariate samples of various sizes foreach (int n in TestUtilities.GenerateIntegerValues(4, 64, 8)) { Sample testStatistics = new Sample(); Distribution testDistribution = null; for (int i = 0; i < 128; i++) { BivariateSample sample = new BivariateSample(); for (int j = 0; j < n; j++) { sample.Add(xDistrubtion.GetRandomValue(rng), yDistribution.GetRandomValue(rng)); } TestResult result = sample.SpearmanRhoTest(); testStatistics.Add(result.Statistic); testDistribution = result.Distribution; } TestResult r2 = testStatistics.KuiperTest(testDistribution); Console.WriteLine("n={0} P={1}", n, r2.LeftProbability); Assert.IsTrue(r2.RightProbability > 0.05); Assert.IsTrue(testStatistics.PopulationMean.ConfidenceInterval(0.99).ClosedContains(testDistribution.Mean)); Assert.IsTrue(testStatistics.PopulationVariance.ConfidenceInterval(0.99).ClosedContains(testDistribution.Variance)); } }