コード例 #1
0
        public void BivariateLinearPolynomialRegressionAgreement()
        {
            // A degree-1 polynomial fit should give the same answer as a linear fit

            BivariateSample B = new BivariateSample();
            B.Add(0.0, 5.0);
            B.Add(3.0, 6.0);
            B.Add(1.0, 7.0);
            B.Add(4.0, 8.0);
            B.Add(2.0, 9.0);
            FitResult PR = B.PolynomialRegression(1);
            FitResult LR = B.LinearRegression();
            Assert.IsTrue(TestUtilities.IsNearlyEqual(PR.Parameters, LR.Parameters));
            Assert.IsTrue(TestUtilities.IsNearlyEqual(PR.CovarianceMatrix, LR.CovarianceMatrix));
            Assert.IsTrue(TestUtilities.IsNearlyEqual(PR.GoodnessOfFit.Statistic, LR.GoodnessOfFit.Statistic));
        }
コード例 #2
0
        public void BivariatePolynomialRegression()
        {
            // do a set of polynomial regression fits
            // make sure not only that the fit parameters are what they should be, but that their variances/covariances are as claimed

            Random rng = new Random(271828);

            // define logistic parameters
            double[] a = new double[] { 0.0, -1.0, 2.0, -3.0 };

            // keep track of sample of returned a and b fit parameters
            MultivariateSample A = new MultivariateSample(a.Length);

            // also keep track of returned covariance estimates
            // since these vary slightly from fit to fit, we will average them
            SymmetricMatrix C = new SymmetricMatrix(a.Length);

            // also keep track of test statistics
            Sample F = new Sample();

            // do 100 fits
            for (int k = 0; k < 100; k++) {

                // we should be able to draw x's from any distribution; noise should be drawn from a normal distribution
                Distribution xd = new CauchyDistribution();
                Distribution nd = new NormalDistribution(0.0, 4.0);

                // generate a synthetic data set
                BivariateSample s = new BivariateSample();
                for (int j = 0; j < 20; j++) {
                    double x = xd.GetRandomValue(rng);
                    double y = nd.GetRandomValue(rng);
                    for (int i = 0; i < a.Length; i++) {
                        y += a[i] * MoreMath.Pow(x, i);
                    }
                    s.Add(x, y);
                }

                // do the regression
                FitResult r = s.PolynomialRegression(a.Length - 1);

                ColumnVector ps = r.Parameters;
                //Console.WriteLine("{0} {1} {2}", ps[0], ps[1], ps[2]);

                // record best fit parameters
                A.Add(ps);

                // record estimated covariances
                C += r.CovarianceMatrix;

                // record the fit statistic
                F.Add(r.GoodnessOfFit.Statistic);
                //Console.WriteLine("F={0}", r.GoodnessOfFit.Statistic);

            }

            C = (1.0 / A.Count) * C; // allow matrix division by real numbers

            // check that mean parameter estimates are what they should be: the underlying population parameters
            for (int i = 0; i < A.Dimension; i++) {
                Console.WriteLine("{0} {1}", A.Column(i).PopulationMean, a[i]);
                Assert.IsTrue(A.Column(i).PopulationMean.ConfidenceInterval(0.95).ClosedContains(a[i]));
            }

            // check that parameter covarainces are what they should be: the reported covariance estimates
            for (int i = 0; i < A.Dimension; i++) {
                for (int j = i; j < A.Dimension; j++) {
                    Console.WriteLine("{0} {1} {2} {3}", i, j, C[i, j], A.TwoColumns(i, j).PopulationCovariance);
                    Assert.IsTrue(A.TwoColumns(i, j).PopulationCovariance.ConfidenceInterval(0.95).ClosedContains(C[i, j]));
                }
            }

            // check that F is distributed as it should be
            //Console.WriteLine(fs.KolmogorovSmirnovTest(new FisherDistribution(2, 48)).LeftProbability);
        }
コード例 #3
0
ファイル: Bugs.cs プロジェクト: JackDetrick/metanumerics
        public void Bug6162()
        {
            // When UncertianMeasurementSample.FitToPolynomial used Cholesky inversion of (A^T A), this inversion
            // would fail when roundoff errors would made the matrix non-positive-definite. We have now changed
            // to QR decomposition, which is more robust.

            //real data
            double[] X_axis = new double[] { 40270.65625, 40270.6569444444, 40270.6576388888, 40270.6583333332, 40270.6590277776,
                40270.659722222, 40270.6604166669, 40270.6611111113, 40270.6618055557, 40270.6625000001 };

            double[] Y_axis = new double[] { 246.824996948242, 246.850006103516, 245.875, 246.225006103516, 246.975006103516,
                247.024993896484, 246.949996948242, 246.875, 247.5, 247.100006103516 };

            UncertainMeasurementSample DataSet = new UncertainMeasurementSample();

            for (int i = 0; i < 10; i++) DataSet.Add(X_axis[i], Y_axis[i], 1);
            //for (int i = 0; i < 10; i++) DataSet.Add(X_axis[i] - 40270.0, Y_axis[i] - 247.0, 1);

            FitResult DataFit = DataSet.FitToPolynomial(3);

            for (int i = 0; i < DataFit.Dimension; i++)
                Console.WriteLine("a" + i.ToString() + " = " + DataFit.Parameter(i).Value);

            BivariateSample bs = new BivariateSample();
            for (int i = 0; i < 10; i++) bs.Add(X_axis[i], Y_axis[i]);
            FitResult bsFit = bs.PolynomialRegression(3);
            for (int i = 0; i < bsFit.Dimension; i++) Console.WriteLine(bsFit.Parameter(i));
        }