/// <summary> /// Run example /// </summary> public void Run() { // Format vector output to console var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone(); formatProvider.TextInfo.ListSeparator = " "; // Create new empty vector var vectorA = new DenseVector(10); Console.WriteLine(@"Empty vector A"); Console.WriteLine(vectorA.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 1. Fill vector by data using indexer [] for (var i = 0; i < vectorA.Count; i++) { vectorA[i] = i; } Console.WriteLine(@"1. Fill vector by data using indexer []"); Console.WriteLine(vectorA.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 2. Fill vector by data using SetValues method vectorA.SetValues(new[] { 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0 }); Console.WriteLine(@"2. Fill vector by data using SetValues method"); Console.WriteLine(vectorA.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 3. Convert Vector to double[] var data = vectorA.ToArray(); Console.WriteLine(@"3. Convert vector to double array"); for (var i = 0; i < data.Length; i++) { Console.Write(data[i].ToString("#0.00\t", formatProvider) + @" "); } Console.WriteLine(); Console.WriteLine(); // 4. Convert Vector to column matrix. A matrix based on this vector in column form (one single column) var columnMatrix = vectorA.ToColumnMatrix(); Console.WriteLine(@"4. Convert vector to column matrix"); Console.WriteLine(columnMatrix.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 5. Convert Vector to row matrix. A matrix based on this vector in row form (one single row) var rowMatrix = vectorA.ToRowMatrix(); Console.WriteLine(@"5. Convert vector to row matrix"); Console.WriteLine(rowMatrix.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 6. Clone vector var cloneA = vectorA.Clone(); Console.WriteLine(@"6. Clone vector"); Console.WriteLine(cloneA.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 7. Clear vector cloneA.Clear(); Console.WriteLine(@"7. Clear vector"); Console.WriteLine(cloneA.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 8. Copy part of vector into another vector. If you need to copy all data then use CopoTy(vector) method. vectorA.CopySubVectorTo(cloneA, 3, 3, 4); Console.WriteLine(@"8. Copy part of vector into another vector"); Console.WriteLine(cloneA.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 9. Get part of vector as another vector var subvector = vectorA.SubVector(0, 5); Console.WriteLine(@"9. Get subvector"); Console.WriteLine(subvector.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 10. Enumerator usage Console.WriteLine(@"10. Enumerator usage"); foreach (var value in vectorA) { Console.Write(value.ToString("#0.00\t", formatProvider) + @" "); } Console.WriteLine(); Console.WriteLine(); // 11. Indexed enumerator usage Console.WriteLine(@"11. Enumerator usage"); foreach (var value in vectorA.GetIndexedEnumerator()) { Console.WriteLine(@"Index = {0}; Value = {1}", value.Item1, value.Item2.ToString("#0.00\t", formatProvider)); } Console.WriteLine(); }
public void StructureRecurse(DenseMatrix X, DenseMatrix Psi, DenseVector d, int n, ref DenseMatrix Q, ref DenseMatrix O, ref DenseMatrix pT_n) { //O = O(t-1) O_enxt = O(t) //o should be a column vector ( in matrix form) var x = new DenseVector(X.RowCount); var psi = new DenseVector(Psi.ColumnCount); X.Column(n, x); Psi.Row(n, psi); DenseMatrix p_n = CalculateGreatPsi((DenseMatrix) x.ToColumnMatrix(), (DenseMatrix) psi.ToRowMatrix()); pT_n = (DenseMatrix) p_n.Transpose(); double ee = Math.Abs(d[n] - (pT_n.Multiply(O))[0, 0]); double temp = 1 + (pT_n.Multiply(Q)).Multiply(p_n)[0, 0]; double ae = Math.Abs(ee/temp); if (ee >= ae) { var L = (DenseMatrix) Q.Multiply(p_n).Multiply(1/temp); Q = (DenseMatrix) ((DenseMatrix.Identity(Q.RowCount).Subtract(L.Multiply(pT_n))).Multiply(Q)); O = (DenseMatrix) O.Add(L*ee); } else { Q = (DenseMatrix) DenseMatrix.Identity(Q.RowCount).Multiply(Q); } }
public void Train(DenseMatrix X, DenseVector d, DenseVector Kd) { int R = X.RowCount; int N = X.ColumnCount; int U = 0; //the number of neurons in the structure var c = new DenseMatrix(R, 1); var sigma = new DenseMatrix(R, 1); var Q = new DenseMatrix((R + 1), (R + 1)); var O = new DenseMatrix(1, (R + 1)); var pT_n = new DenseMatrix((R + 1), 1); double maxPhi = 0; int maxIndex; var Psi = new DenseMatrix(N, 1); Console.WriteLine("Running..."); //for each observation n in X for (int i = 0; i < N; i++) { Console.WriteLine(100*(i/(double) N) + "%"); var x = new DenseVector(R); X.Column(i, x); //if there are neurons in structure, //update structure recursively. if (U == 0) { c = (DenseMatrix) x.ToColumnMatrix(); sigma = new DenseMatrix(R, 1, SigmaZero); U = 1; Psi = CalculatePsi(X, c, sigma); UpdateStructure(X, Psi, d, ref Q, ref O); pT_n = (DenseMatrix) (CalculateGreatPsi((DenseMatrix) x.ToColumnMatrix(), (DenseMatrix) Psi.Row(i).ToRowMatrix())) .Transpose(); } else { StructureRecurse(X, Psi, d, i, ref Q, ref O, ref pT_n); } bool KeepSpinning = true; while (KeepSpinning) { //Calculate the error and if-part criteria double ee = pT_n.Multiply(O)[0, 0]; double approximationError = Math.Abs(d[i] - ee); DenseVector Phi; double SumPhi; CalculatePhi(x, c, sigma, out Phi, out SumPhi); maxPhi = Phi.Maximum(); maxIndex = Phi.MaximumIndex(); if (approximationError > delta) { if (maxPhi < threshold) { var tempSigma = new DenseVector(R); sigma.Column(maxIndex, tempSigma); double minSigma = tempSigma.Minimum(); int minIndex = tempSigma.MinimumIndex(); sigma[minIndex, maxIndex] = k_sigma*minSigma; Psi = CalculatePsi(X, c, sigma); UpdateStructure(X, Psi, d, ref Q, ref O); var psi = new DenseVector(Psi.ColumnCount); Psi.Row(i, psi); pT_n = (DenseMatrix) CalculateGreatPsi((DenseMatrix) x.ToColumnMatrix(), (DenseMatrix) psi.ToRowMatrix()) .Transpose(); } else { //add a new neuron and update strucutre double distance = 0; var cTemp = new DenseVector(R); var sigmaTemp = new DenseVector(R); //foreach input variable for (int j = 0; j < R; j++) { distance = Math.Abs(x[j] - c[j, 0]); int distanceIndex = 0; //foreach neuron past 1 for (int k = 1; k < U; k++) { if ((Math.Abs(x[j] - c[j, k])) < distance) { distanceIndex = k; distance = Math.Abs(x[j] - c[j, k]); } } if (distance < Kd[j]) { cTemp[j] = c[j, distanceIndex]; sigmaTemp[j] = sigma[j, distanceIndex]; } else { cTemp[j] = x[j]; sigmaTemp[j] = distance; } } //end foreach c = (DenseMatrix) c.InsertColumn(c.ColumnCount - 1, cTemp); sigma = (DenseMatrix) sigma.InsertColumn(sigma.ColumnCount - 1, sigmaTemp); Psi = CalculatePsi(X, c, sigma); UpdateStructure(X, Psi, d, ref Q, ref O); U++; KeepSpinning = false; } } else { if (maxPhi < threshold) { var tempSigma = new DenseVector(R); sigma.Column(maxIndex, tempSigma); double minSigma = tempSigma.Minimum(); int minIndex = tempSigma.MinimumIndex(); sigma[minIndex, maxIndex] = k_sigma*minSigma; Psi = CalculatePsi(X, c, sigma); UpdateStructure(X, Psi, d, ref Q, ref O); var psi = new DenseVector(Psi.ColumnCount); Psi.Row(i, psi); pT_n = (DenseMatrix) CalculateGreatPsi((DenseMatrix) x.ToColumnMatrix(), (DenseMatrix) psi.ToRowMatrix()) .Transpose(); } else { KeepSpinning = false; } } } } out_C = c; out_O = O; out_Sigma = sigma; Console.WriteLine("Done."); }
public static double[] bar3gs(double[][] ec,double[] ep, double[] ed) { double[] result = new double[2]; //Computes the Green-Lagrange strain and corresponding normal force in a //three dimensional bar element // // OUTPUT: // [es, ee] //Initial length squared double l02 = Math.Pow(getElementLength(ec),2); //Difference in displacement at nodes Vector u = new DenseVector(3); for (int i = 0; i < 3; i++) { u[i] = ed[i] - ed[i+3]; } //Bar vector in undeformed configuration Vector x0 = new DenseVector(3); for (int i = 0; i < 3; i++ ) { //The structure is [x,y,z][node1,node2...] x0[i] = ec[i][0] - ec[i][1]; } //Green-lagrange strain result[1] = 1 / l02 * (x0.ToRowMatrix().Multiply(u.ToColumnMatrix())[0, 0] + 0.5 * (u.ToRowMatrix().Multiply(u.ToColumnMatrix()))[0, 0]); //Normal force result[0] = ep[0] * ep[1] * result[1]; return result; }