/// <summary>
        /// Run example
        /// </summary>
        public void Run()
        {
            // Format vector output to console
            var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
            formatProvider.TextInfo.ListSeparator = " ";

            // Create new empty vector
            var vectorA = new DenseVector(10);
            Console.WriteLine(@"Empty vector A");
            Console.WriteLine(vectorA.ToString("#0.00\t", formatProvider));
            Console.WriteLine();
            
            // 1. Fill vector by data using indexer []
            for (var i = 0; i < vectorA.Count; i++)
            {
                vectorA[i] = i;
            }

            Console.WriteLine(@"1. Fill vector by data using indexer []");
            Console.WriteLine(vectorA.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Fill vector by data using SetValues method
            vectorA.SetValues(new[] { 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0 });
            Console.WriteLine(@"2. Fill vector by data using SetValues method");
            Console.WriteLine(vectorA.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 3. Convert Vector to double[]
            var data = vectorA.ToArray();
            Console.WriteLine(@"3. Convert vector to double array");
            for (var i = 0; i < data.Length; i++)
            {
                Console.Write(data[i].ToString("#0.00\t", formatProvider) + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 4. Convert Vector to column matrix. A matrix based on this vector in column form (one single column)
            var columnMatrix = vectorA.ToColumnMatrix();
            Console.WriteLine(@"4. Convert vector to column matrix");
            Console.WriteLine(columnMatrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 5. Convert Vector to row matrix. A matrix based on this vector in row form (one single row)
            var rowMatrix = vectorA.ToRowMatrix();
            Console.WriteLine(@"5. Convert vector to row matrix");
            Console.WriteLine(rowMatrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 6. Clone vector
            var cloneA = vectorA.Clone();
            Console.WriteLine(@"6. Clone vector");
            Console.WriteLine(cloneA.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 7. Clear vector
            cloneA.Clear();
            Console.WriteLine(@"7. Clear vector");
            Console.WriteLine(cloneA.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 8. Copy part of vector into another vector. If you need to copy all data then use CopoTy(vector) method.
            vectorA.CopySubVectorTo(cloneA, 3, 3, 4);
            Console.WriteLine(@"8. Copy part of vector into another vector");
            Console.WriteLine(cloneA.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 9. Get part of vector as another vector
            var subvector = vectorA.SubVector(0, 5);
            Console.WriteLine(@"9. Get subvector");
            Console.WriteLine(subvector.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

           // 10. Enumerator usage
            Console.WriteLine(@"10. Enumerator usage");
            foreach (var value in vectorA)
            {
                Console.Write(value.ToString("#0.00\t", formatProvider) + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 11. Indexed enumerator usage
            Console.WriteLine(@"11. Enumerator usage");
            foreach (var value in vectorA.GetIndexedEnumerator())
            {
                Console.WriteLine(@"Index = {0}; Value = {1}", value.Item1, value.Item2.ToString("#0.00\t", formatProvider));
            }

            Console.WriteLine();
        }
Ejemplo n.º 2
0
        public void StructureRecurse(DenseMatrix X, DenseMatrix Psi, DenseVector d, int n, ref DenseMatrix Q,
            ref DenseMatrix O, ref DenseMatrix pT_n)
        {
            //O = O(t-1) O_enxt = O(t)
            //o should be a column vector ( in matrix form)
            var x = new DenseVector(X.RowCount);
            var psi = new DenseVector(Psi.ColumnCount);

            X.Column(n, x);
            Psi.Row(n, psi);

            DenseMatrix p_n = CalculateGreatPsi((DenseMatrix) x.ToColumnMatrix(), (DenseMatrix) psi.ToRowMatrix());

            pT_n = (DenseMatrix) p_n.Transpose();

            double ee = Math.Abs(d[n] - (pT_n.Multiply(O))[0, 0]);
            double temp = 1 + (pT_n.Multiply(Q)).Multiply(p_n)[0, 0];
            double ae = Math.Abs(ee/temp);

            if (ee >= ae)
            {
                var L = (DenseMatrix) Q.Multiply(p_n).Multiply(1/temp);
                Q = (DenseMatrix) ((DenseMatrix.Identity(Q.RowCount).Subtract(L.Multiply(pT_n))).Multiply(Q));
                O = (DenseMatrix) O.Add(L*ee);
            }
            else
            {
                Q = (DenseMatrix) DenseMatrix.Identity(Q.RowCount).Multiply(Q);
            }
        }
Ejemplo n.º 3
0
        public void Train(DenseMatrix X, DenseVector d, DenseVector Kd)
        {
            int R = X.RowCount;
            int N = X.ColumnCount;
            int U = 0; //the number of neurons in the structure


            var c = new DenseMatrix(R, 1);
            var sigma = new DenseMatrix(R, 1);

            var Q = new DenseMatrix((R + 1), (R + 1));
            var O = new DenseMatrix(1, (R + 1));
            var pT_n = new DenseMatrix((R + 1), 1);

            double maxPhi = 0;
            int maxIndex;

            var Psi = new DenseMatrix(N, 1);

            Console.WriteLine("Running...");
            //for each observation n in X
            for (int i = 0; i < N; i++)
            {
                Console.WriteLine(100*(i/(double) N) + "%");

                var x = new DenseVector(R);
                X.Column(i, x);

                //if there are neurons in structure,
                //update structure recursively.
                if (U == 0)
                {
                    c = (DenseMatrix) x.ToColumnMatrix();
                    sigma = new DenseMatrix(R, 1, SigmaZero);
                    U = 1;
                    Psi = CalculatePsi(X, c, sigma);
                    UpdateStructure(X, Psi, d, ref Q, ref O);
                    pT_n =
                        (DenseMatrix)
                            (CalculateGreatPsi((DenseMatrix) x.ToColumnMatrix(), (DenseMatrix) Psi.Row(i).ToRowMatrix()))
                                .Transpose();
                }
                else
                {
                    StructureRecurse(X, Psi, d, i, ref Q, ref O, ref pT_n);
                }


                bool KeepSpinning = true;
                while (KeepSpinning)
                {
                    //Calculate the error and if-part criteria
                    double ee = pT_n.Multiply(O)[0, 0];

                    double approximationError = Math.Abs(d[i] - ee);

                    DenseVector Phi;
                    double SumPhi;
                    CalculatePhi(x, c, sigma, out Phi, out SumPhi);

                    maxPhi = Phi.Maximum();
                    maxIndex = Phi.MaximumIndex();

                    if (approximationError > delta)
                    {
                        if (maxPhi < threshold)
                        {
                            var tempSigma = new DenseVector(R);
                            sigma.Column(maxIndex, tempSigma);

                            double minSigma = tempSigma.Minimum();
                            int minIndex = tempSigma.MinimumIndex();
                            sigma[minIndex, maxIndex] = k_sigma*minSigma;
                            Psi = CalculatePsi(X, c, sigma);
                            UpdateStructure(X, Psi, d, ref Q, ref O);
                            var psi = new DenseVector(Psi.ColumnCount);
                            Psi.Row(i, psi);

                            pT_n =
                                (DenseMatrix)
                                    CalculateGreatPsi((DenseMatrix) x.ToColumnMatrix(), (DenseMatrix) psi.ToRowMatrix())
                                        .Transpose();
                        }
                        else
                        {
                            //add a new neuron and update strucutre

                            double distance = 0;
                            var cTemp = new DenseVector(R);
                            var sigmaTemp = new DenseVector(R);

                            //foreach input variable
                            for (int j = 0; j < R; j++)
                            {
                                distance = Math.Abs(x[j] - c[j, 0]);
                                int distanceIndex = 0;

                                //foreach neuron past 1
                                for (int k = 1; k < U; k++)
                                {
                                    if ((Math.Abs(x[j] - c[j, k])) < distance)
                                    {
                                        distanceIndex = k;
                                        distance = Math.Abs(x[j] - c[j, k]);
                                    }
                                }

                                if (distance < Kd[j])
                                {
                                    cTemp[j] = c[j, distanceIndex];
                                    sigmaTemp[j] = sigma[j, distanceIndex];
                                }
                                else
                                {
                                    cTemp[j] = x[j];
                                    sigmaTemp[j] = distance;
                                }
                            }
                            //end foreach

                            c = (DenseMatrix) c.InsertColumn(c.ColumnCount - 1, cTemp);
                            sigma = (DenseMatrix) sigma.InsertColumn(sigma.ColumnCount - 1, sigmaTemp);
                            Psi = CalculatePsi(X, c, sigma);
                            UpdateStructure(X, Psi, d, ref Q, ref O);
                            U++;
                            KeepSpinning = false;
                        }
                    }
                    else
                    {
                        if (maxPhi < threshold)
                        {
                            var tempSigma = new DenseVector(R);
                            sigma.Column(maxIndex, tempSigma);

                            double minSigma = tempSigma.Minimum();
                            int minIndex = tempSigma.MinimumIndex();
                            sigma[minIndex, maxIndex] = k_sigma*minSigma;
                            Psi = CalculatePsi(X, c, sigma);
                            UpdateStructure(X, Psi, d, ref Q, ref O);
                            var psi = new DenseVector(Psi.ColumnCount);
                            Psi.Row(i, psi);

                            pT_n =
                                (DenseMatrix)
                                    CalculateGreatPsi((DenseMatrix) x.ToColumnMatrix(), (DenseMatrix) psi.ToRowMatrix())
                                        .Transpose();
                        }
                        else
                        {
                            KeepSpinning = false;
                        }
                    }
                }
            }

            out_C = c;
            out_O = O;
            out_Sigma = sigma;

            Console.WriteLine("Done.");
        }
Ejemplo n.º 4
0
        public static double[] bar3gs(double[][] ec,double[] ep, double[] ed)
        {
            double[] result = new double[2];
            //Computes the Green-Lagrange strain and corresponding normal force in a
            //three dimensional bar element
            //
            // OUTPUT:
            // [es, ee]

            //Initial length squared
            double l02 = Math.Pow(getElementLength(ec),2);

            //Difference in displacement at nodes
            Vector u = new DenseVector(3);

            for (int i = 0; i < 3; i++)
            {
                u[i] = ed[i] - ed[i+3];
            }

            //Bar vector in undeformed configuration
            Vector x0 = new DenseVector(3);

            for (int i = 0; i < 3; i++ )
            {
                //The structure is [x,y,z][node1,node2...]
                x0[i] = ec[i][0] - ec[i][1];
            }

            //Green-lagrange strain
            result[1] = 1 / l02 * (x0.ToRowMatrix().Multiply(u.ToColumnMatrix())[0, 0] + 0.5 * (u.ToRowMatrix().Multiply(u.ToColumnMatrix()))[0, 0]);

            //Normal force
            result[0] = ep[0] * ep[1] * result[1];

            return result;
        }