static Function <T> CreateFunction <T>(NodeProto node, long version, List <TensorProto> initializers, int[] inputShape, ref int initilizerIndex, out int[] outputShape) where T : unmanaged, IComparable <T> { switch (node.OpType) { case "BatchNormalization": if (version >= 9) { TensorProto bn_scale = initializers[initilizerIndex++]; TensorProto bn_b = initializers[initilizerIndex++]; TensorProto bn_mean = initializers[initilizerIndex++]; TensorProto bn_var = initializers[initilizerIndex++]; BatchNormalization <T> batchNormalization = new BatchNormalization <T>( channelSize: bn_scale.FloatDatas.Length, useGamma: true, useBeta: true, eps: (TVal <T>)node.GetAttribute("epsilon").F, name: node.Name, inputNames: new[] { node.Inputs[0] }, outputNames: new[] { node.Outputs[0] }, decay: (TVal <T>)node.GetAttribute("momentum").F ); Array.Copy(bn_scale.FloatDatas, batchNormalization.Gamma.Data, bn_scale.FloatDatas.Length); Array.Copy(bn_b.FloatDatas, batchNormalization.Beta.Data, bn_b.FloatDatas.Length); Array.Copy(bn_mean.FloatDatas, batchNormalization.AvgMean.Data, bn_mean.FloatDatas.Length); Array.Copy(bn_var.FloatDatas, batchNormalization.AvgVar.Data, bn_var.FloatDatas.Length); outputShape = inputShape; return(batchNormalization); } else if (version >= 7) { TensorProto bn_scale = initializers[initilizerIndex++]; TensorProto bn_b = initializers[initilizerIndex++]; TensorProto bn_mean = initializers[initilizerIndex++]; TensorProto bn_var = initializers[initilizerIndex++]; //[spatial] // If true, compute the mean and variance across per activation. // If false, compute the mean and variance across per feature over each mini - batch. // 真の場合は、活性化ごとに平均と分散を計算します。 // falseの場合は,ミニバッチごとに特徴量ごとの平均と分散を計算します. //将来Axis対応することがあればコメントアウトを外す //int[] axis = {0}; //if (node.GetAttribute("spatial").I != 1) //{ // List<int> tmp = new List<int>(); // tmp.Add(0); //ここの次元指定はミニバッチ数に当たる // tmp.AddRange(Enumerable.Range(2, inputShape.Length - 2)); // axis = tmp.ToArray(); //} BatchNormalization <T> batchNormalization = new BatchNormalization <T>( channelSize: bn_scale.FloatDatas.Length, eps: (TVal <T>)node.GetAttribute("epsilon").F, name: node.Name, inputNames: new[] { node.Inputs[0] }, outputNames: new[] { node.Outputs[0] }, decay: (TVal <T>)node.GetAttribute("momentum").F //axis: axis ); Array.Copy(bn_scale.FloatDatas, batchNormalization.Gamma.Data, bn_scale.FloatDatas.Length); Array.Copy(bn_b.FloatDatas, batchNormalization.Beta.Data, bn_b.FloatDatas.Length); Array.Copy(bn_mean.FloatDatas, batchNormalization.AvgMean.Data, bn_mean.FloatDatas.Length); Array.Copy(bn_var.FloatDatas, batchNormalization.AvgVar.Data, bn_var.FloatDatas.Length); outputShape = inputShape; return(batchNormalization); } else if (version >= 6) { //[spatial] //If true, compute the mean and variance across all spatial elements. //If false, compute the mean and variance across per feature. //真の場合、すべての空間要素の平均と分散を計算します。 //偽の場合は,特徴量ごとの平均と分散を計算します。 throw new NotImplementedException(); } else if (version >= 1) { throw new NotImplementedException(); } break; case "Conv": if (version >= 11) { throw new NotImplementedException(); } else if (version >= 1) { TensorProto conv_w = initializers[initilizerIndex++]; TensorProto conv_b = null; if (node.Inputs.Count > 2) { conv_b = initializers[initilizerIndex++]; } outputShape = inputShape; return(new Convolution2D <T>( inputChannels: (int)conv_w.Dims[1], outputChannels: (int)conv_w.Dims[0], kernelSize: Array.ConvertAll(node.GetAttribute("kernel_shape").Ints, s => (int)s), stride: Array.ConvertAll(node.GetAttribute("strides").Ints, s => (int)s), pad: Array.ConvertAll(node.GetAttribute("pads").Ints, s => (int)s), //pads: [x1_begin, x2_begin...x1_end, x2_end,...]で入ってくるので使用するのは前2つ noBias: node.Inputs.Count < 3, initialW: conv_w.FloatDatas, initialb: conv_b?.FloatDatas, name: node.Name, inputNames: new[] { node.Inputs[0] }, outputNames: new[] { node.Outputs[0] })); } break; case "Dropout": if (version >= 12) { throw new NotImplementedException(); } else if (version >= 10) { throw new NotImplementedException(); } else if (version >= 7) { outputShape = inputShape; return(new Dropout <T>((TVal <T>)node.GetAttribute("ratio").F, name: node.Name, inputNames: new[] { node.Inputs[0] }, outputNames: new[] { node.Outputs[0] })); } else if (version >= 6) { throw new NotImplementedException(); } else if (version >= 1) { throw new NotImplementedException(); } break; case "Flatten": outputShape = inputShape; //厳密には変わるが、関数内で吸収されるため不要 return(null); case "Gemm": if (version >= 11) { throw new NotImplementedException(); } else if (version >= 9) { throw new NotImplementedException(); } else if (version >= 7) { TensorProto w = initializers[initilizerIndex++]; TensorProto b = initializers[initilizerIndex++]; outputShape = new[] { inputShape[0], //バッチカウント (int)w.Dims[0] //出力数 }; return(new Linear <T>( inputCount: (int)w.Dims[1], outputCount: (int)w.Dims[0], name: node.Name, inputNames: new[] { node.Inputs[0] }, outputNames: new[] { node.Outputs[0] }, noBias: false, initialW: w.FloatDatas, initialb: b.FloatDatas )); } else if (version >= 6) { throw new NotImplementedException(); } else if (version >= 1) { throw new NotImplementedException(); } break; case "MaxPool": if (version >= 12) { throw new NotImplementedException(); } else if (version >= 11) { throw new NotImplementedException(); } else if (version >= 10) { throw new NotImplementedException(); } else if (version >= 8) { int[] kernelSize = Array.ConvertAll(node.GetAttribute("kernel_shape").Ints, s => (int)s); int[] stride = Array.ConvertAll(node.GetAttribute("strides").Ints, s => (int)s); int[] pad = Array.ConvertAll(node.GetAttribute("pads").Ints, s => (int)s); List <int> tmpOutputShape = new List <int>(); tmpOutputShape.Add(inputShape[0]); //ミニバッチカウント tmpOutputShape.Add(inputShape[1]); //チャンネル tmpOutputShape.Add((int)Math.Floor((inputShape[2] - kernelSize[1] + pad[1] * 2.0f + stride[1] - 1.0f) / stride[1]) + 1); tmpOutputShape.Add((int)Math.Floor((inputShape[3] - kernelSize[0] + pad[0] * 2.0f + stride[0] - 1.0f) / stride[0]) + 1); outputShape = tmpOutputShape.ToArray(); return(new MaxPooling2D <T>( kernelSize: kernelSize, stride: stride, pad: pad, name: node.Name, inputNames: new[] { node.Inputs[0] }, outputNames: new[] { node.Outputs[0] } )); } else if (version >= 1) { throw new NotImplementedException(); } break; case "Relu": if (version >= 6) { outputShape = inputShape; return(new ReLU <T>(name: node.Name, inputNames: new[] { node.Inputs[0] }, outputNames: new[] { node.Outputs[0] })); } else if (version >= 1) { throw new NotImplementedException(); } break; } Console.WriteLine(node.OpType + "was not implemented."); throw new NotImplementedException(); }
public static NdArray <T> ToNdArray <T>(this TensorProto tensorProto) where T : unmanaged, IComparable <T> { return(new NdArray <T>(tensorProto.Dims)); }