Ejemplo n.º 1
0
        static Function <T> CreateFunction <T>(NodeProto node, long version, List <TensorProto> initializers, int[] inputShape, ref int initilizerIndex, out int[] outputShape) where T : unmanaged, IComparable <T>
        {
            switch (node.OpType)
            {
            case "BatchNormalization":
                if (version >= 9)
                {
                    TensorProto bn_scale = initializers[initilizerIndex++];
                    TensorProto bn_b     = initializers[initilizerIndex++];
                    TensorProto bn_mean  = initializers[initilizerIndex++];
                    TensorProto bn_var   = initializers[initilizerIndex++];

                    BatchNormalization <T> batchNormalization = new BatchNormalization <T>(
                        channelSize: bn_scale.FloatDatas.Length,
                        useGamma: true,
                        useBeta: true,
                        eps: (TVal <T>)node.GetAttribute("epsilon").F,
                        name: node.Name,
                        inputNames: new[] { node.Inputs[0] },
                        outputNames: new[] { node.Outputs[0] },
                        decay: (TVal <T>)node.GetAttribute("momentum").F
                        );

                    Array.Copy(bn_scale.FloatDatas, batchNormalization.Gamma.Data, bn_scale.FloatDatas.Length);
                    Array.Copy(bn_b.FloatDatas, batchNormalization.Beta.Data, bn_b.FloatDatas.Length);

                    Array.Copy(bn_mean.FloatDatas, batchNormalization.AvgMean.Data, bn_mean.FloatDatas.Length);
                    Array.Copy(bn_var.FloatDatas, batchNormalization.AvgVar.Data, bn_var.FloatDatas.Length);

                    outputShape = inputShape;
                    return(batchNormalization);
                }
                else if (version >= 7)
                {
                    TensorProto bn_scale = initializers[initilizerIndex++];
                    TensorProto bn_b     = initializers[initilizerIndex++];
                    TensorProto bn_mean  = initializers[initilizerIndex++];
                    TensorProto bn_var   = initializers[initilizerIndex++];

                    //[spatial]
                    // If true, compute the mean and variance across per activation.
                    // If false, compute the mean and variance across per feature over each mini - batch.
                    // 真の場合は、活性化ごとに平均と分散を計算します。
                    // falseの場合は,ミニバッチごとに特徴量ごとの平均と分散を計算します.

                    //将来Axis対応することがあればコメントアウトを外す
                    //int[] axis = {0};
                    //if (node.GetAttribute("spatial").I != 1)
                    //{
                    //    List<int> tmp = new List<int>();
                    //    tmp.Add(0); //ここの次元指定はミニバッチ数に当たる
                    //    tmp.AddRange(Enumerable.Range(2, inputShape.Length - 2));
                    //    axis = tmp.ToArray();
                    //}

                    BatchNormalization <T> batchNormalization = new BatchNormalization <T>(
                        channelSize: bn_scale.FloatDatas.Length,
                        eps: (TVal <T>)node.GetAttribute("epsilon").F,
                        name: node.Name,
                        inputNames: new[] { node.Inputs[0] },
                        outputNames: new[] { node.Outputs[0] },
                        decay: (TVal <T>)node.GetAttribute("momentum").F
                        //axis: axis
                        );

                    Array.Copy(bn_scale.FloatDatas, batchNormalization.Gamma.Data, bn_scale.FloatDatas.Length);
                    Array.Copy(bn_b.FloatDatas, batchNormalization.Beta.Data, bn_b.FloatDatas.Length);

                    Array.Copy(bn_mean.FloatDatas, batchNormalization.AvgMean.Data, bn_mean.FloatDatas.Length);
                    Array.Copy(bn_var.FloatDatas, batchNormalization.AvgVar.Data, bn_var.FloatDatas.Length);

                    outputShape = inputShape;
                    return(batchNormalization);
                }
                else if (version >= 6)
                {
                    //[spatial]
                    //If true, compute the mean and variance across all spatial elements.
                    //If false, compute the mean and variance across per feature.
                    //真の場合、すべての空間要素の平均と分散を計算します。
                    //偽の場合は,特徴量ごとの平均と分散を計算します。

                    throw new NotImplementedException();
                }
                else if (version >= 1)
                {
                    throw new NotImplementedException();
                }
                break;

            case "Conv":
                if (version >= 11)
                {
                    throw new NotImplementedException();
                }
                else if (version >= 1)
                {
                    TensorProto conv_w = initializers[initilizerIndex++];
                    TensorProto conv_b = null;

                    if (node.Inputs.Count > 2)
                    {
                        conv_b = initializers[initilizerIndex++];
                    }

                    outputShape = inputShape;
                    return(new Convolution2D <T>(
                               inputChannels: (int)conv_w.Dims[1],
                               outputChannels: (int)conv_w.Dims[0],
                               kernelSize: Array.ConvertAll(node.GetAttribute("kernel_shape").Ints, s => (int)s),
                               stride: Array.ConvertAll(node.GetAttribute("strides").Ints, s => (int)s),
                               pad: Array.ConvertAll(node.GetAttribute("pads").Ints, s => (int)s), //pads: [x1_begin, x2_begin...x1_end, x2_end,...]で入ってくるので使用するのは前2つ
                               noBias: node.Inputs.Count < 3,
                               initialW: conv_w.FloatDatas,
                               initialb: conv_b?.FloatDatas,
                               name: node.Name,
                               inputNames: new[] { node.Inputs[0] },
                               outputNames: new[] { node.Outputs[0] }));
                }
                break;

            case "Dropout":
                if (version >= 12)
                {
                    throw new NotImplementedException();
                }
                else if (version >= 10)
                {
                    throw new NotImplementedException();
                }
                else if (version >= 7)
                {
                    outputShape = inputShape;
                    return(new Dropout <T>((TVal <T>)node.GetAttribute("ratio").F, name: node.Name, inputNames: new[] { node.Inputs[0] }, outputNames: new[] { node.Outputs[0] }));
                }
                else if (version >= 6)
                {
                    throw new NotImplementedException();
                }
                else if (version >= 1)
                {
                    throw new NotImplementedException();
                }
                break;

            case "Flatten":
                outputShape = inputShape;    //厳密には変わるが、関数内で吸収されるため不要
                return(null);

            case "Gemm":
                if (version >= 11)
                {
                    throw new NotImplementedException();
                }
                else if (version >= 9)
                {
                    throw new NotImplementedException();
                }
                else if (version >= 7)
                {
                    TensorProto w = initializers[initilizerIndex++];
                    TensorProto b = initializers[initilizerIndex++];

                    outputShape = new[]
                    {
                        inputShape[0],      //バッチカウント
                        (int)w.Dims[0]      //出力数
                    };

                    return(new Linear <T>(
                               inputCount: (int)w.Dims[1],
                               outputCount: (int)w.Dims[0],
                               name: node.Name,
                               inputNames: new[] { node.Inputs[0] },
                               outputNames: new[] { node.Outputs[0] },
                               noBias: false,
                               initialW: w.FloatDatas,
                               initialb: b.FloatDatas
                               ));
                }
                else if (version >= 6)
                {
                    throw new NotImplementedException();
                }
                else if (version >= 1)
                {
                    throw new NotImplementedException();
                }
                break;

            case "MaxPool":
                if (version >= 12)
                {
                    throw new NotImplementedException();
                }
                else if (version >= 11)
                {
                    throw new NotImplementedException();
                }
                else if (version >= 10)
                {
                    throw new NotImplementedException();
                }
                else if (version >= 8)
                {
                    int[] kernelSize = Array.ConvertAll(node.GetAttribute("kernel_shape").Ints, s => (int)s);
                    int[] stride     = Array.ConvertAll(node.GetAttribute("strides").Ints, s => (int)s);
                    int[] pad        = Array.ConvertAll(node.GetAttribute("pads").Ints, s => (int)s);

                    List <int> tmpOutputShape = new List <int>();
                    tmpOutputShape.Add(inputShape[0]);    //ミニバッチカウント
                    tmpOutputShape.Add(inputShape[1]);    //チャンネル
                    tmpOutputShape.Add((int)Math.Floor((inputShape[2] - kernelSize[1] + pad[1] * 2.0f + stride[1] - 1.0f) / stride[1]) + 1);
                    tmpOutputShape.Add((int)Math.Floor((inputShape[3] - kernelSize[0] + pad[0] * 2.0f + stride[0] - 1.0f) / stride[0]) + 1);
                    outputShape = tmpOutputShape.ToArray();

                    return(new MaxPooling2D <T>(
                               kernelSize: kernelSize,
                               stride: stride,
                               pad: pad,
                               name: node.Name,
                               inputNames: new[] { node.Inputs[0] },
                               outputNames: new[] { node.Outputs[0] }
                               ));
                }
                else if (version >= 1)
                {
                    throw new NotImplementedException();
                }
                break;

            case "Relu":
                if (version >= 6)
                {
                    outputShape = inputShape;
                    return(new ReLU <T>(name: node.Name, inputNames: new[] { node.Inputs[0] }, outputNames: new[] { node.Outputs[0] }));
                }
                else if (version >= 1)
                {
                    throw new NotImplementedException();
                }
                break;
            }

            Console.WriteLine(node.OpType + "was not implemented.");
            throw new NotImplementedException();
        }
Ejemplo n.º 2
0
 public static NdArray <T> ToNdArray <T>(this TensorProto tensorProto) where T : unmanaged, IComparable <T>
 {
     return(new NdArray <T>(tensorProto.Dims));
 }