コード例 #1
0
        /// <summary>
        /// 实时计算,数据计算
        /// </summary>
        /// <param name="input">观测矩阵</param>
        /// <returns></returns>
        public override AdjustResultMatrix Run(AdjustObsMatrix input)
        {
            if (input == this.ObsMatrix)
            {
                return(this.LastResult);
            }
            this.ObsMatrix = input;

            switch (StepOfRecursive)
            {
            case StepOfRecursive.SuperposOfConstNeq:
                return(GetConstParamResult(input, NormalEquationSuperposer));

            //case StepOfRecursive.ComputeMutableParam:  break;
            case StepOfRecursive.SequentialConst:
                AdjustResultMatrix res = GetSequentialConst(input);
                this.LastConstResult = res;
                return(res);

            case StepOfRecursive.RealTime:    //实时计算,参数变化可能带来错误
                AdjustResultMatrix result = GetRealTimeResult(input);
                this.LastResult = result;
                return(result);

            case StepOfRecursive.ParamAdjust:              //参数逐历元平差
                return(GetSimpleParamAdjustResult(input)); //参数平差验证,2018.10.15, czs, hmx, 验证第一个结果是一样的。

            default:
                break;
            }
            return(null);
        }
コード例 #2
0
        /// <summary>
        /// 计算
        /// </summary>
        /// <param name="input"></param>
        /// <returns></returns>
        public override AdjustResultMatrix Run(AdjustObsMatrix input)
        {
            //try
            //{
            this.ObsMatrix = input;
            int paramCount = input.Coefficient.ColCount;

            Predict(input.Transfer, InverseWeightOfTransfer);

            var est1 = CorrectSimple(input.Observation - input.FreeVector, input.Coefficient, input.Observation.InverseWeight);
            // var est2 = CorrectNormal(this.Observation, CoeffOfParam, Observation.InverseWeight);
            // var est3 = NewCorrect(this.Observation, CoeffOfParam, Observation.InverseWeight);

            //var differ12 = est1 - est2;
            //var differ23 = est2 - est3;
            //var differ13 = est1 - est3;

            var Estimated             = est1;
            AdjustResultMatrix result = new AdjustResultMatrix()
                                        .SetEstimated(Estimated)
                                        .SetObsMatrix(input)
                                        .SetFreedom(Freedom)
                                        .SetVarianceFactor(VarianceOfUnitWeight)
                                        .SetVtpv(vtpv)
            ;

            return(result);
            //}
            //catch (Exception ex)
            //{
            //    log.Error("SimpleKalmanFilter 滤波出错了", ex);
            //}
        }
コード例 #3
0
 /// <summary>
 /// 构造函数
 /// </summary>
 /// <param name="obs"></param>
 /// <param name="PrevAdjustment"></param>
 public OneDimAdjustMatrixBuilder(RmsedNumeral obs, AdjustResultMatrix PrevAdjustment = null)
 {
     this.PrevAdjustment = PrevAdjustment;
     this.ObsValue       = obs;
     this.ParamNames     = new List <string>()
     {
         "Value"
     };
 }
コード例 #4
0
        private AdjustResultMatrix GetRealTimeResult(AdjustObsMatrix input)
        {
            //构建不变参数的法方程
            var newConstParamNe = input.BuildConstParamNormalEquation();

            NormalEquationSuperposer.Add(newConstParamNe);                 //添加到法方程迭加器中
            WeightedVector     estY   = NormalEquationSuperposer.GetEstimated();
            AdjustResultMatrix result = Step3GetMutableX(estY, ObsMatrix); //求异变参数

            return(result);
        }
コード例 #5
0
        /// <summary>
        /// 计算
        /// </summary>
        public override AdjustResultMatrix Run(AdjustObsMatrix input)
        {
            //命名规则:0表示上一个,1表示预测,无数字表示当次
            //上次次观测设置
            var X0  = new Matrix((IMatrix)input.Apriori);
            var Qx0 = new Matrix(input.Apriori.InverseWeight);
            var Px0 = new Matrix(Qx0.GetInverse());
            //本次观测设置
            var Qo = new Matrix(input.Observation.InverseWeight);
            var Po = new Matrix(Qo.GetInverse());
            var A  = new Matrix(input.Coefficient);
            var AT = A.Trans;
            var L  = new Matrix((IMatrix)input.Observation);

            int paramCount = A.ColCount;
            int obsCount   = A.RowCount;

            //1.预测残差
            //计算预测残差
            var V1  = L - A * X0;//观测值 - 估计近似值
            var Qv1 = Qo + A * Qx0 * AT;



            //2.计算增益矩阵
            var J = Qx0 * AT * Qv1.Inversion;// 增益矩阵
            //3.平差结果
            var dX = J * V1;
            var X  = X0 + dX;

            //4.精度评定
            var Qx      = Qx0 - J * A * Qx0;
            var Freedom = input.Observation.Count - input.ParamCount + input.Apriori.Count;

            var V    = A * dX - V1;                    //估值-观测值 V = A * X - L = A * (X0 + deltaX) - (l + A * X0) =  A * deltaX - l.
            var vtpv = (V.Trans * Po * V)[0, 0];
            var VarianceOfUnitWeight = vtpv / Freedom; //单位权方差
            var Estimated            = new WeightedVector(X, Qx)
            {
                ParamNames = input.ParamNames
            };


            AdjustResultMatrix result = new AdjustResultMatrix()
                                        .SetEstimated(Estimated)
                                        .SetFreedom(Freedom)
                                        .SetObsMatrix(input)
                                        .SetVarianceFactor(VarianceOfUnitWeight)
                                        .SetVtpv(vtpv)
            ;

            return(result);
        }
コード例 #6
0
        /// <summary>
        /// 运行
        /// </summary>
        /// <param name="input"></param>
        /// <returns></returns>
        public override AdjustResultMatrix Run(AdjustObsMatrix input)
        {
            //原始输入
            Matrix B  = new Matrix(input.Coefficient);
            Matrix L  = new Matrix((IMatrix)input.Observation);
            Matrix QL = new Matrix((IMatrix)input.Observation.InverseWeight);
            Matrix B0 = input.HasFreeVector ? new Matrix(input.FreeVector, true) : null;//B0

            Matrix PL      = QL.Inversion;
            int    freedom = B.RowCount;
            Matrix BT      = B.Trans;

            int obsCount   = L.RowCount;
            int paramCount = 0;


            Matrix         W      = -(B * L - B0);
            Matrix         N      = B * QL * BT;
            Matrix         inverN = N.Inversion;
            Matrix         K      = inverN * W;
            Matrix         Vhat   = (QL * BT * K);
            Matrix         Qvhat  = QL * BT * inverN * B * QL;
            WeightedVector estLW  = new WeightedVector(Vhat, Qvhat)
            {
                ParamNames = input.Observation.ParamNames
            };

            Matrix         Lhat         = L + Vhat;
            Matrix         QhatL        = QL - Qvhat;
            WeightedVector correctedObs = new WeightedVector(Lhat, QhatL)
            {
                ParamNames = input.Observation.ParamNames
            };

            double vtpv = (Vhat.Trans * PL * Vhat).FirstValue;
            double s0   = vtpv / freedom;//单位权中误差估值

            if (!DoubleUtil.IsValid(s0))
            {
                log.Error("方差值无效!" + s0);
            }

            AdjustResultMatrix result = new AdjustResultMatrix()
                                        .SetAdjustmentType(AdjustmentType.条件平差)
                                        .SetEstimated(estLW)
                                        .SetCorrectedObs(correctedObs)
                                        .SetObsMatrix(input)
                                        .SetFreedom(freedom)
                                        .SetVarianceFactor(s0)
                                        .SetVtpv(vtpv);

            return(result);
        }
コード例 #7
0
        /// <summary>
        /// 添加一个。
        /// </summary>
        /// <param name="Adjustment"></param>
        public void AddAdjustment(AdjustResultMatrix Adjustment)
        {
            string name = "";

            if (Adjustment.ObsMatrix.Tag is Time)
            {
                var epoch = (Time)Adjustment.ObsMatrix.Tag;
                name = epoch.ToString();

                //var table = AdjustTables.GetOrCreate(AdjustName.Epoch);
                //table.NewRow();
                //table.AddItem(AdjustName.Epoch, epoch);
            }

            var obsMatrixEq = Adjustment.ObsMatrix.GetObsMatrixEquation(name);

            AdjustTables.Add(obsMatrixEq.Name, obsMatrixEq);
        }
コード例 #8
0
        /// <summary>
        /// 批量总体技术。参数不要改变,否则达不到预期效果。
        /// </summary>
        /// <param name="inputs"></param>
        /// <returns></returns>
        public List <AdjustResultMatrix> Run(List <AdjustObsMatrix> inputs)
        {
            AdjustObsMatrix firstMatrix = inputs[0];
            Matrix          Y0all       = firstMatrix.HasSecondApprox ? new Matrix(firstMatrix.SecondApproxVector, true) : null;
            WeightedVector  estY        = GetConstY(inputs);

            //Matrix Y = Y0all + constY;
            //step 3:求易变参数
            List <AdjustResultMatrix> results = new List <AdjustResultMatrix>();

            foreach (var obsMatrix in inputs)
            {
                this.ObsMatrix = obsMatrix;

                AdjustResultMatrix result = Step3GetMutableX(estY, obsMatrix);

                results.Add(result);
            }
            return(results);
        }
コード例 #9
0
        /// <summary>
        /// 添加一个。
        /// </summary>
        /// <param name="Adjustment"></param>
        public void AddAdjustment(AdjustResultMatrix Adjustment)
        {
            #region 必须的
            if (Adjustment.ObsMatrix.Tag is Time)
            {
                var epoch = (Time)Adjustment.ObsMatrix.Tag;

                var table = AdjustTables.GetOrCreate(AdjustName.Epoch);
                table.NewRow();
                table.AddItem(AdjustName.Epoch, epoch);
            }


            AdjustTables.GetOrCreate(AdjustName.ParamName).NewRow((List <string>)Adjustment.ParamNames);
            AdjustTables.GetOrCreate(AdjustName.Obs).NewRow((IVector)Adjustment.ObsMatrix.Observation);
            AdjustTables.GetOrCreate(AdjustName.RmsOfObs).NewRow(Adjustment.ObsMatrix.Observation.GetRmsVector());
            AdjustTables.GetOrCreate(AdjustName.Design).NewRow(Adjustment.ObsMatrix.Coefficient);
            #endregion

            if (!Vector.IsEmpty(Adjustment.ObsMatrix.ApproxVector))
            {
                AdjustTables.GetOrCreate(AdjustName.Approx).NewRow(Adjustment.ObsMatrix.ApproxVector);
            }

            if (!Matrix.IsEmpty(Adjustment.ObsMatrix.Transfer))
            {
                AdjustTables.GetOrCreate(AdjustName.Trans).NewRow(Adjustment.ObsMatrix.Transfer);
                AdjustTables.GetOrCreate(AdjustName.RmsOfTrans).NewRow(Adjustment.ObsMatrix.Transfer.InverseWeight.Pow(0.5));
            }
            if (!Vector.IsEmpty(Adjustment.ObsMatrix.Apriori))
            {
                AdjustTables.GetOrCreate(AdjustName.Apriori).NewRow((IVector)Adjustment.ObsMatrix.Apriori);
                AdjustTables.GetOrCreate(AdjustName.RmsOfApriori).NewRow(Adjustment.ObsMatrix.Apriori.GetRmsVector());
            }
            if (!Vector.IsEmpty((IVector)Adjustment.Estimated))
            {
                AdjustTables.GetOrCreate(AdjustName.Estimated).NewRow((IVector)Adjustment.Estimated);
                AdjustTables.GetOrCreate(AdjustName.RmsOfEstimated).NewRow((IVector)Adjustment.Estimated.GetRmsVector());
            }
        }
コード例 #10
0
ファイル: GnssResultBuilder.cs プロジェクト: yxw027/GNSSer
        /// <summary>
        /// 构建电离层输出表格
        /// </summary>
        /// <param name="epoch"></param>
        /// <param name="Adjustment"></param>
        /// <param name="ParamNames"></param>
        private void BuildIonoResult(ISiteSatObsInfo epoch, Geo.Algorithm.Adjust.AdjustResultMatrix Adjustment, List <string> ParamNames)
        {
            if (epoch is EpochInformation) //这里只处理单站单历元情况
            {
                var epochInfo = epoch as EpochInformation;
                //电离层汇总
                var allInOneTable = TableTextManager.GetOrCreate(epoch.Name + "_All_" + Gnsser.ParamNames.Iono);
                allInOneTable.NewRow();
                allInOneTable.AddItem("Epoch", epoch.ReceiverTime);

                ObjectTableStorage tableIonoParam          = null;
                ObjectTableStorage tableIf                 = null;
                ObjectTableStorage tableGridFile           = null;
                ObjectTableStorage tableHarmoFile          = null;
                ObjectTableStorage tableOfIonoParamService = null;

                //电离层参数
                if (Geo.Utils.StringUtil.Contanis(ParamNames, Gnsser.ParamNames.Iono, true))//参数化电离层文件
                {
                    tableIonoParam = TableTextManager.GetOrCreate(epoch.Name + "_Param_" + Gnsser.ParamNames.Iono);
                    tableIonoParam.NewRow();
                    tableIonoParam.AddItem("Epoch", epoch.ReceiverTime);

                    var ionoResult = Adjustment.Estimated.GetAll(Gnsser.ParamNames.Iono);
                    foreach (var item in ionoResult)
                    {
                        //斜距转换为垂距
                        //计算穿刺点
                        var prn = SatelliteNumber.Parse(item.Key);
                        var sat = epochInfo.Get(prn);
                        tableIonoParam.AddItem(prn.ToString(), item.Value.Value);
                    }
                }

                //双频电离层
                if (epochInfo.First.Count > 1)
                {
                    tableIf = TableTextManager.GetOrCreate(epoch.Name + "_IFofC_" + Gnsser.ParamNames.Iono);
                    tableIf.NewRow();
                    foreach (var sat in epochInfo.EnabledSats)
                    {
                        //斜距转换为垂距
                        //计算穿刺点
                        var prn            = sat.Prn;
                        var ionXyz         = sat.GetIntersectionXyz();
                        var geoCoordOfIono = CoordTransformer.XyzToGeoCoord(ionXyz);
                        var ionoFreeRange  = sat.Combinations.IonoFreeRange.Value;
                        var rangeA         = sat.FrequenceA.PseudoRange.Value;
                        var ionoError      = rangeA - ionoFreeRange;

                        tableIf.AddItem("Epoch", epoch.ReceiverTime);
                        tableIf.AddItem(prn.ToString(), ionoError);
                    }
                }


                if (Context.IgsGridIonoFileService != null && Context.IgsGridIonoFileService.TimePeriod.Contains(epoch.ReceiverTime))
                {
                    tableGridFile = TableTextManager.GetOrCreate(epoch.Name + "_Grid_" + Gnsser.ParamNames.Iono);
                    tableGridFile.NewRow();
                    foreach (var sat in epochInfo.EnabledSats)
                    {
                        //斜距转换为垂距
                        //计算穿刺点
                        var prn = sat.Prn;
                        tableGridFile.AddItem("Epoch", epoch.ReceiverTime);

                        double val = IonoGridModelCorrector.GetGridModelCorrection(sat, FrequenceType.A, Context.IgsGridIonoFileService);
                        tableGridFile.AddItem(prn.ToString(), val);
                    }
                }

                if (Context.IgsCodeHarmoIonoFileService != null && Context.IgsCodeHarmoIonoFileService.TimePeriod.Contains(epoch.ReceiverTime))
                {
                    tableHarmoFile = TableTextManager.GetOrCreate(epoch.Name + "_Harmo_" + Gnsser.ParamNames.Iono);
                    tableHarmoFile.NewRow();
                    foreach (var sat in epochInfo.EnabledSats)
                    {
                        //斜距转换为垂距
                        //计算穿刺点
                        var prn = sat.Prn;
                        tableHarmoFile.AddItem("Epoch", epoch.ReceiverTime);

                        double val = IonoGridModelCorrector.GetGridModelCorrection(sat, FrequenceType.A, Context.IgsCodeHarmoIonoFileService);
                        tableHarmoFile.AddItem(prn.ToString(), val);
                    }
                }
                if (Context.IonoKlobucharParamService != null)
                {
                    var ionoParam = Context.IonoKlobucharParamService.Get(epoch.ReceiverTime);//
                    if (ionoParam != null)
                    {
                        tableOfIonoParamService = TableTextManager.GetOrCreate(epoch.Name + "_ParamModel_" + Gnsser.ParamNames.Iono);
                        tableOfIonoParamService.NewRow();
                        foreach (var sat in epochInfo.EnabledSats)
                        {
                            tableOfIonoParamService.AddItem("Epoch", epoch.ReceiverTime);

                            var val = IonoParamModelCorrector.GetCorrectorInDistance(sat, ionoParam);

                            tableOfIonoParamService.AddItem(sat.Prn.ToString(), val);
                        }
                    }
                }


                //保存到总表中
                foreach (var sat in epochInfo.EnabledSats)
                {
                    var prn = sat.Prn;
                    CheckAndAddIonoValueToMainTable(allInOneTable, tableIonoParam, prn, "Param");
                    CheckAndAddIonoValueToMainTable(allInOneTable, tableIf, prn, "IfofC");
                    CheckAndAddIonoValueToMainTable(allInOneTable, tableGridFile, prn, "Grid");
                    CheckAndAddIonoValueToMainTable(allInOneTable, tableHarmoFile, prn, "Harmo");
                    CheckAndAddIonoValueToMainTable(allInOneTable, tableOfIonoParamService, prn, "ParamModel");
                }
            }
        }
コード例 #11
0
ファイル: ParamAdjuster.cs プロジェクト: yxw027/GNSSer
        /// <summary>
        /// 数据计算
        /// </summary>
        /// <param name="input">观测矩阵</param>
        /// <returns></returns>
        public override AdjustResultMatrix Run(AdjustObsMatrix input)
        {
            this.ObsMatrix = input;

            //观测值权阵设置,对已知量赋值
            Matrix L          = new Matrix((IMatrix)input.Observation);
            Matrix QL         = new Matrix(input.Observation.InverseWeight);
            Matrix PL         = new Matrix(QL.GetInverse());
            Matrix A          = new Matrix(input.Coefficient);
            Matrix AT         = A.Trans;
            Matrix X0         = input.HasApprox ? new Matrix(input.ApproxVector, true) : null;
            Matrix D          = input.HasFreeVector ? new Matrix(input.FreeVector, true) : null;
            Matrix dN         = input.CoeffIncrementOfNormalEquation;
            int    obsCount   = A.RowCount;
            int    paramCount = A.ColCount;
            int    freedom    = obsCount - paramCount;
            //观测值更新
            Matrix l = L - (A * X0 + D); //如果null,则是本身

            //法方程
            Matrix N = new Matrix(SymmetricMatrix.Parse(AT * PL * A + dN));
            Matrix U = AT * PL * l;

            Matrix InverN = N.Inversion;

            //平差结果
            Matrix x  = InverN * U;
            Matrix Qx = InverN - dN;
            //精度评定
            Matrix V  = A * x - l;
            Matrix Qv = QL - A * Qx * AT;
            Matrix X  = X0 + x;

            double vtpv = (V.Trans * PL * V).FirstValue;
            double s0   = vtpv / (freedom == 0 ? 0.1 : freedom);//单位权方差

            WeightedVector estX = new WeightedVector(x, Qx)
            {
                ParamNames = input.ParamNames
            };
            WeightedVector CorrectedEstimate = new WeightedVector(X, Qx)
            {
                ParamNames = input.ParamNames
            };
            WeightedVector estV = new WeightedVector(V, Qv)
            {
                ParamNames = this.ObsMatrix.Observation.ParamNames
            };

            Matrix Lhat         = L + V;
            Matrix QLhat        = A * Qx * AT;
            var    correctedObs = new WeightedVector(Lhat, QLhat)
            {
                ParamNames = this.ObsMatrix.Observation.ParamNames
            };


            if (!DoubleUtil.IsValid(s0))
            {
                log.Error("方差值无效!" + s0);
            }

            AdjustResultMatrix result = new AdjustResultMatrix()
                                        .SetAdjustmentType(AdjustmentType.参数平差)
                                        .SetEstimated(estX)
                                        .SetCorrection(estV)
                                        .SetCorrectedObs(correctedObs)
                                        .SetCorrectedEstimate(CorrectedEstimate)
                                        .SetObsMatrix(input)
                                        .SetFreedom(freedom)
                                        .SetVarianceFactor(s0)
                                        .SetVtpv(vtpv);

            return(result);
        }
コード例 #12
0
        /// <summary>
        /// 参数加权平差
        /// </summary>
        /// <param name="input"></param>
        /// <returns></returns>
        public override AdjustResultMatrix Run(AdjustObsMatrix input)
        {
            //下标 o 表示观测值,x表示估计值,xa0表示具有先验信息的随机参数,
            //xa为包含先验信息xa0的矩阵,是在整个误差方程中计算的矩阵
            var Freedom = input.ObsCount - (input.ParamCount - input.Apriori.RowCount); // n -tb

            Matrix A          = new Matrix(input.Coefficient);
            Matrix AT         = A.Trans;
            Matrix L          = new Matrix((IMatrix)input.Observation);
            Matrix Qo         = new Matrix(input.Observation.InverseWeight);
            Matrix Po         = Qo.Inversion;
            int    obsCount   = L.RowCount;
            int    paramCount = A.ColCount;

            //具有先验信息的随机参数
            Matrix Xa0  = new Matrix((IMatrix)input.Apriori);
            Matrix Qxa0 = new Matrix(input.Apriori.InverseWeight);
            Matrix Pxa0 = Qxa0.Inversion;

            //计算先验信息的平差矩阵部分
            Matrix Nxa0 = new Matrix(input.ParamCount);

            Nxa0.SetSub(Pxa0);

            Matrix Uxa0 = Pxa0 * Xa0;
            Matrix Uxa  = new Matrix(input.ParamCount, 1);

            Uxa.SetSub(Uxa0);

            //法方程系数阵
            Matrix N      = AT * Po * A + Nxa0;
            Matrix InverN = N.Inversion;

            //法方程右手边
            Matrix U = AT * Po * L + Uxa;

            //计算估值
            Matrix X = InverN * U;

            //精度估计
            Matrix Xa  = X.GetSub(0, 0, Xa0.RowCount);
            Matrix dXa = Xa - Xa0;

            Matrix V    = A * X - L;
            Matrix VT   = V.Trans;
            var    vtpv = (VT * Po * V + dXa.Trans * Pxa0 * dXa).FirstValue;
            var    VarianceOfUnitWeight = vtpv / Freedom;

            var Estimated = new WeightedVector(X, InverN)
            {
                ParamNames = input.ParamNames
            };
            AdjustResultMatrix result = new AdjustResultMatrix()
                                        .SetEstimated(Estimated)
                                        .SetObsMatrix(input)
                                        .SetFreedom(Freedom)
                                        .SetVarianceFactor(VarianceOfUnitWeight)
                                        .SetVtpv(vtpv);

            return(result);
        }
コード例 #13
0
        /// <summary>
        /// 数据处理。全部转化为计算偏移量,即,各种参数采用近似值,此处需要考虑初值情况。
        /// </summary>
        public override AdjustResultMatrix Run(AdjustObsMatrix input)
        {
            //参数命名规则:下标 0 表示上一个,1 表示预测,无数字表示当次
            #region 参数预测
            WeightedVector apriori = input.Apriori;
            if (apriori == null)
            {
                throw new ArgumentException("必须具有先验参数值。");
            }
            //先验值赋值
            ArrayMatrix X0  = new ArrayMatrix(apriori);                                //上一次参数估值
            ArrayMatrix Qx0 = new ArrayMatrix(apriori.InverseWeight.Array);            //上一次估计误差方差权逆阵

            ArrayMatrix Trans  = new ArrayMatrix(input.Transfer.Array);                //状态转移矩阵
            ArrayMatrix TransT = Trans.Transpose();
            ArrayMatrix Q_m    = new ArrayMatrix(input.InverseWeightOfTransfer.Array); //状态转移模型噪声

            //计算参数预测值,可以看做序贯平差中的第一组数据
            ArrayMatrix X1  = Trans * X0;
            ArrayMatrix Qx1 = Trans * Qx0 * TransT + Q_m;

            var Predicted = new WeightedVector(X1, Qx1)
            {
                ParamNames = input.ParamNames
            };                                                                            //结果为残差
            #endregion

            //System.IO.File.WriteAllText(saveDir + @"\Predicted.txt", Predicted.ToFormatedText());
            //  System.IO.File.WriteAllText(saveDir + @"\Apriori.txt", Apriori.ToFormatedText());

            #region 参数估计
            ArrayMatrix A  = new ArrayMatrix(input.Coefficient.Array); //误差方程系数阵
            ArrayMatrix AT = A.Transpose();                            //A 的转置

            //估计值才需要观测值,而预测值不需要
            //观测值赋值
            WeightedVector obs = input.Observation - input.FreeVector;
            if (obs == null)
            {
                throw new ArgumentException("必须具有观测向量。");
            }

            ArrayMatrix L   = new ArrayMatrix(obs);                     //观测值,或 观测值 - 估计值,!!
            ArrayMatrix Q_o = new ArrayMatrix(obs.InverseWeight.Array); //观测噪声权逆阵
            ArrayMatrix P_o = Q_o.Inverse;


            //计算预测的观测残差 自由项
            //由 V = A X - L, 得 V = A x - l, l = L - A X0, X = X0 + x
            ArrayMatrix dL  = L - A * X1;//此处注意符号
            ArrayMatrix QdL = Q_o + A * Qx1 * AT;
            //计算平差值的权阵
            ArrayMatrix PXk = AT * P_o * A + Qx1.Inverse;
            //计算平差值的权逆阵
            ArrayMatrix Qx = PXk.Inverse;
            //计算增益矩阵
            ArrayMatrix J = Qx * AT * P_o;
            //计算参数改正值和估值
            ArrayMatrix deltaX = J * dL;
            ArrayMatrix X      = X1 + deltaX;//改 X0 为 X1

            //精度估计
            ArrayMatrix UnitMatrix = ArrayMatrix.EyeMatrix(J.RowCount, 1.0);
            ArrayMatrix B          = UnitMatrix - J * A;
            Qx = B * Qx1 * B.Transposition + J * Q_o * J.Transposition; //参数权逆阵

            //   Matrix Qx = (AT * P_o * A + Qx1.Inverse).Inverse;

            var Estimated = new WeightedVector(X, Qx)
            {
                ParamNames = input.ParamNames
            };
            #endregion

            #region 验后观测残差
            // Matrix Px = Qx.Inverse;
            ArrayMatrix V = L - A * X;

            this.PostfitObservation = new Vector(MatrixUtil.GetColVector(V.Array))
            {
                ParamNames = input.ParamNames
            };
            #endregion

            #region 精度估计
            this.SumOfObsCount += input.ObsCount;
            var Freedom = SumOfObsCount - input.ParamCount;// input.Freedom;

            //观测噪声权阵
            ArrayMatrix V1TPV1 = deltaX.Transpose() * Qx1.Inverse * deltaX;
            ArrayMatrix VTPV   = V.Transpose() * P_o * V;
            var         vtpv   = VTPV[0, 0];
            double      upper  = (V1TPV1 + VTPV)[0, 0];


            if (!DoubleUtil.IsValid(upper) || upper > 1e10 || upper < 0)
            {
                log.Debug("方差值无效!" + upper);
            }

            //赋值
            var VarianceOfUnitWeight = Math.Abs(upper) / Freedom;

            //System.IO.File.WriteAllText(saveDir + @"\Estimated.txt", Estimated.ToFormatedText());
            //System.IO.File.WriteAllText(saveDir + @"\Observation.txt", Observation.ToFormatedText());

            #endregion

            AdjustResultMatrix result = new AdjustResultMatrix()
                                        .SetEstimated(Estimated)
                                        .SetFreedom(Freedom)
                                        .SetObsMatrix(input)
                                        .SetVarianceFactor(VarianceOfUnitWeight)
                                        .SetVtpv(vtpv);

            return(result);
        }
コード例 #14
0
ファイル: SequentialAdjuster.cs プロジェクト: yxw027/GNSSer
        /// <summary>
        /// 计算
        /// </summary>
        public override AdjustResultMatrix Run(AdjustObsMatrix input)
        {
            this.ObsMatrix = input;

            //命名规则:0表示上一个(先验信息),1表示预测,无数字表示当次
            //上次次观测设置
            var Qx0 = new Matrix(input.Apriori.InverseWeight);
            var Px0 = new Matrix(Qx0.GetInverse());
            var X0  = new Matrix((IMatrix)input.Apriori);

            //本次观测设置
            var Qo         = new Matrix(input.Observation.InverseWeight);
            var Po         = new Matrix(Qo.GetInverse());
            var A          = new Matrix(input.Coefficient);
            var AT         = A.Trans;
            var L          = new Matrix((IMatrix)input.Observation);
            int obsCount   = L.RowCount;
            int paramCount = A.ColCount;

            //具有状态转移的序贯平差
            //if (input.Transfer != null && input.InverseWeightOfTransfer!=null)
            //{
            //    Matrix Trans = new Matrix(input.Transfer.Array);           //状态转移矩阵
            //    Matrix TransT = Trans.Transpose();
            //    Matrix Q_m = new Matrix(input.InverseWeightOfTransfer.Array);    //状态转移模型噪声

            //    //计算参数预测值,可以看做序贯平差中的第一组数据
            //    //ArrayMatrix X1 = Trans * X0;
            //    //ArrayMatrix Qx1 = Trans * Qx0 * TransT + Q_m;
            //    X0 = Trans * X0;
            //    Qx0 = Trans * Qx0 * TransT + Q_m;
            //    Px0 = Qx0.Inversion;
            //}



            //1.预测残差
            //计算预测残差
            var V1  = L - A * X0;             //观测值 - 估计近似值
            var Qv1 = Qo + A * Qx0 * AT;      //预测残差方差
            //2.计算增益矩阵
            var J = Qx0 * AT * Qv1.Inversion; // 增益矩阵
            //3.平差结果
            var dX = J * V1;                  //参数改正
            var X  = X0 + dX;

            //4.精度评定
            var Qx        = Qx0 - J * A * Qx0;
            var Estimated = new WeightedVector(X, Qx)
            {
                ParamNames = input.ParamNames
            };

            SumOfObsCount += input.ObsCount;
            var Freedom = SumOfObsCount - input.ParamCount;// AprioriObsCount;
            //  var V = A * dX - V1;//估值-观测值 V = A * X - L = A * (X0 + deltaX) - (l + A * X0) =  A * deltaX - l.
            //  this.VarianceOfUnitWeight = (V.Trans * Po * V).FirstValue / Freedom;//单位权方差

            Matrix V    = A * X - L;
            Matrix Vx   = X - X0;
            Matrix VTPV = null;

            if (Po.IsDiagonal)
            {
                VTPV = new Matrix(AdjustmentUtil.ATPA(V, Po)) + (Vx.Trans * Px0 * Vx);
            }
            else
            {
                VTPV = V.Trans * Po * V + (Vx.Trans * Px0 * Vx);
            }

            var vtpv = VTPV[0, 0];

            this.SumOfVptv     += vtpv;
            this.SumOfObsCount += A.RowCount;
            var VarianceOfUnitWeight = Math.Abs(vtpv / (Freedom));


            AdjustResultMatrix result = new AdjustResultMatrix()
                                        .SetEstimated(Estimated)
                                        .SetFreedom(Freedom)
                                        .SetObsMatrix(input)
                                        .SetVarianceFactor(VarianceOfUnitWeight)
                                        .SetVtpv(vtpv);

            return(result);
        }
コード例 #15
0
        /// <summary>
        /// 构建不变参数的计算结果。
        /// 注意:需要控制参数的增减问题。
        /// 基本思路:增加则插入,减少则删除,通过参数名称来控制。
        /// </summary>
        /// <param name="obsMatrix"></param>
        /// <param name="NormalEquationSuperposer"></param>
        /// <returns></returns>
        public static AdjustResultMatrix GetConstParamResult(AdjustObsMatrix obsMatrix, NormalEquationSuperposer NormalEquationSuperposer)
        {
            //观测值权阵设置,对已知量赋值
            Matrix L               = new Matrix((IMatrix)obsMatrix.Observation);
            Matrix QL              = new Matrix(obsMatrix.Observation.InverseWeight);
            Matrix PL              = new Matrix(QL.GetInverse());
            Matrix A               = new Matrix(obsMatrix.Coefficient);
            Matrix AT              = A.Trans;
            Matrix B               = new Matrix(obsMatrix.SecondCoefficient);
            Matrix BT              = B.Trans;
            Matrix X0              = obsMatrix.HasApprox ? new Matrix(obsMatrix.ApproxVector, true) : null;
            Matrix Y0              = obsMatrix.HasSecondApprox ? new Matrix(obsMatrix.SecondApproxVector, true) : null;
            Matrix D               = obsMatrix.HasFreeVector ? new Matrix(obsMatrix.FreeVector, true) : null;
            int    obsCount        = L.RowCount;
            int    fixedParamCount = obsMatrix.SecondParamNames.Count;// B.ColCount;
            int    freedom         = obsCount - fixedParamCount;

            //观测值更新
            Matrix lxy = L - (A * X0 + B * Y0 + D); //采用估值计算的观测值小量

            Matrix ATPL = AT * PL;
            //法方程
            Matrix Na      = ATPL * A;
            Matrix Nab     = AT * PL * B;
            Matrix InverNa = Na.Inversion;
            Matrix J       = A * InverNa * AT * PL;
            Matrix I       = Matrix.CreateIdentity(J.RowCount);
            Matrix B2      = (I - J) * B; //新的系数阵 Ac, 原文中为 B波浪~
            Matrix B2T     = B2.Trans;
            Matrix B2TPL   = B2T * PL;
            Matrix NofB2   = B2TPL * B2;
            Matrix UofB2   = B2TPL * lxy;

            NofB2.ColNames = obsMatrix.SecondParamNames;
            NofB2.RowNames = obsMatrix.SecondParamNames;

            UofB2.RowNames = obsMatrix.SecondParamNames;
            UofB2.ColNames = new List <string>()
            {
                "ConstParam"
            };

            //生成法方程
            var ne = new MatrixEquation(NofB2, UofB2);

            //叠加法方程
            NormalEquationSuperposer.Add(ne);//添加到法方程迭加器中

            var acNe = NormalEquationSuperposer.CurrentAccumulated;

            Matrix inverN = acNe.N.Inversion;
            Matrix y      = inverN * acNe.U;

            y.RowNames = acNe.ParamNames;
            Matrix Qy = inverN;

            Qy.ColNames = acNe.ParamNames;
            Qy.RowNames = acNe.ParamNames;
            var estY = new WeightedVector(y, Qy)
            {
                ParamNames = acNe.ParamNames
            };

            var    V    = B2 * y - lxy;
            Matrix Qv   = QL - B2 * Qy * B2T;
            Matrix Y    = Y0 + y;
            var    vtpv = (V.Trans * PL * V).FirstValue;
            double s0   = vtpv / (freedom == 0 ? 0.1 : freedom);//单位权方差

            WeightedVector CorrectedEstimate = new WeightedVector(Y, Qy);

            WeightedVector estV = new WeightedVector(V, Qv)
            {
                ParamNames = obsMatrix.Observation.ParamNames
            };
            Matrix Lhat         = L + V;
            Matrix QLhat        = B2 * Qy * B2T;
            var    correctedObs = new WeightedVector(Lhat, QLhat)
            {
                ParamNames = obsMatrix.Observation.ParamNames
            };

            AdjustResultMatrix result = new AdjustResultMatrix()
                                        .SetAdjustmentType(AdjustmentType.递归最小二乘)
                                        .SetEstimated(estY)
                                        .SetCorrection(estV)
                                        .SetCorrectedObs(correctedObs)
                                        .SetCorrectedEstimate(CorrectedEstimate)
                                        .SetObsMatrix(obsMatrix)
                                        .SetFreedom(freedom)
                                        .SetVarianceFactor(s0)
                                        .SetVtpv(vtpv);

            return(result);
        }
コード例 #16
0
        /// <summary>
        /// 第三步:计算易变参数
        /// </summary>
        /// <param name="estY"></param>
        /// <param name="obsMatrix"></param>
        /// <returns></returns>
        private AdjustResultMatrix Step3GetMutableX(WeightedVector estY, AdjustObsMatrix obsMatrix)
        {
            Matrix constY  = estY.GetVectorMatrix();
            Matrix constQy = estY.InverseWeight;

            //观测值权阵设置,对已知量赋值
            Matrix L                 = new Matrix((IMatrix)obsMatrix.Observation);
            Matrix QL                = new Matrix(obsMatrix.Observation.InverseWeight);
            Matrix PL                = new Matrix(QL.GetInverse());
            Matrix A                 = new Matrix(obsMatrix.Coefficient);
            Matrix AT                = A.Trans;
            Matrix B                 = new Matrix(obsMatrix.SecondCoefficient);
            Matrix BT                = B.Trans;
            Matrix X0                = obsMatrix.HasApprox ? new Matrix(obsMatrix.ApproxVector, true) : null;
            Matrix Y0                = obsMatrix.HasSecondApprox ? new Matrix(obsMatrix.SecondApproxVector, true) : null;
            Matrix D                 = obsMatrix.HasFreeVector ? new Matrix(obsMatrix.FreeVector, true) : null;
            int    obsCount          = L.RowCount;
            int    fixedParamCount   = B.ColCount;
            int    mutableParamCount = A.ColCount;
            int    paramCount        = fixedParamCount + mutableParamCount;
            int    freedom           = obsCount - paramCount;

            Matrix lxy  = L - (A * X0 + B * Y0 + D); //采用估值计算的观测值小量
            Matrix ATPL = AT * PL;
            //法方程
            Matrix Na      = ATPL * A;
            Matrix Nab     = AT * PL * B;
            Matrix InverNa = Na.Inversion;

            //求x
            //观测值更新,采用估值进行计算
            Matrix lx = lxy - B * constY;                     // = L - (A * X0 + B * Y + D);
                                                              /*  Matrix x = InverNa * ATPL * lx;*/
            Matrix x = InverNa * (ATPL * lxy - Nab * constY); //这两个计算是等价的
            Matrix X = X0 + x;

            Matrix Ntmp = Na.Inversion * Nab;
            Matrix Qx   = InverNa + Ntmp * constQy * Ntmp.Trans;

            //Matrix Qxy = AT * PL * B;
            //Matrix Qtemp = Qx * Qxy;
            //Matrix Dx = Qx + Qtemp * Dy * Qtemp.Trans;

            //精度评定
            Matrix V  = A * x - lx;
            Matrix Qv = QL - A * Qx * AT - B * constQy * BT;

            // Matrix lT = l.Trans;

            double vtpv = (V.Trans * PL * V).FirstValue;       //(lT * PL * l - lT * PL * Ac * y).FirstValue;//

            double s0 = vtpv / (freedom == 0 ? 0.1 : freedom); //单位权方差

            WeightedVector estX = new WeightedVector(x, Qx)
            {
                ParamNames = obsMatrix.ParamNames
            };
            WeightedVector CorrectedEstimate = new WeightedVector(X, Qx)
            {
                ParamNames = obsMatrix.ParamNames
            };
            WeightedVector estV = new WeightedVector(V, Qv)
            {
                ParamNames = obsMatrix.Observation.ParamNames
            };

            Matrix Lhat         = L + V;
            Matrix QLhat        = A * Qx * AT;
            var    correctedObs = new WeightedVector(Lhat, QLhat)
            {
                ParamNames = this.ObsMatrix.Observation.ParamNames
            };


            if (!DoubleUtil.IsValid(s0))
            {
                log.Error("方差值无效!" + s0);
            }

            AdjustResultMatrix result = new AdjustResultMatrix()
                                        .SetAdjustmentType(AdjustmentType.递归最小二乘)
                                        .SetEstimated(estX)
                                        .SetSecondEstimated(estY)
                                        .SetCorrection(estV)
                                        .SetCorrectedObs(correctedObs)
                                        .SetCorrectedEstimate(CorrectedEstimate)
                                        .SetObsMatrix(obsMatrix)
                                        .SetFreedom(freedom)
                                        .SetVarianceFactor(s0)
                                        .SetVtpv(vtpv);

            return(result);
        }
コード例 #17
0
ファイル: SequentialAdjuster2.cs プロジェクト: yxw027/GNSSer
        /// <summary>
        /// 计算
        /// </summary>
        public override AdjustResultMatrix Run(AdjustObsMatrix input)
        {
            this.ObsMatrix = input;

            //命名规则:0表示上一个(先验信息),1表示预测,无数字表示当次
            //上次次观测设置
            var Qx0 = new Matrix(input.Apriori.InverseWeight);
            var Px0 = new Matrix(Qx0.GetInverse());
            var X0  = new Matrix((IMatrix)input.Apriori);

            //本次观测设置
            var Qo         = new Matrix(input.Observation.InverseWeight);
            var Po         = new Matrix(Qo.GetInverse());
            var A          = new Matrix(input.Coefficient);
            var AT         = A.Trans;
            var L          = new Matrix((IMatrix)input.Observation);
            int obsCount   = L.RowCount;
            int paramCount = A.ColCount;

            //具有状态转移的序贯平差
            if (input.Transfer != null && input.InverseWeightOfTransfer != null)
            {
                Matrix Trans  = new Matrix(input.Transfer.Array);                //状态转移矩阵
                Matrix TransT = Trans.Transpose();
                Matrix Q_m    = new Matrix(input.InverseWeightOfTransfer.Array); //状态转移模型噪声

                //计算参数预测值,可以看做序贯平差中的第一组数据
                //ArrayMatrix X1 = Trans * X0;
                //ArrayMatrix Qx1 = Trans * Qx0 * TransT + Q_m;
                //更新先验值
                X0  = Trans * X0;
                Qx0 = Trans * Qx0 * TransT + Q_m;
                Px0 = Qx0.Inversion;
            }
            var ATP = AT * Po;
            var N   = ATP * A;
            var U   = ATP * L;
            var Px  = (N + Px0);
            var Qx  = Px.Inversion;
            var X   = Qx * (U + Px0 * X0);


            var Estimated = new WeightedVector(X, Qx)
            {
                ParamNames = input.ParamNames
            };

            SumOfObsCount += input.ObsCount;
            var Freedom = SumOfObsCount - input.ParamCount;// AprioriObsCount;

            Matrix V    = A * X - L;
            Matrix Vx   = X - X0;
            Matrix VTPV = null;

            if (Po.IsDiagonal)
            {
                VTPV = new Matrix(AdjustmentUtil.ATPA(V, Po)) + (Vx.Trans * Px0 * Vx);
            }
            else
            {
                VTPV = V.Trans * Po * V + (Vx.Trans * Px0 * Vx);
            }

            var vtpv = VTPV[0, 0];

            this.SumOfObsCount += A.RowCount;
            var VarianceOfUnitWeight = Math.Abs(vtpv / (Freedom));

            AdjustResultMatrix result = new AdjustResultMatrix()
                                        .SetEstimated(Estimated)
                                        .SetFreedom(Freedom)
                                        .SetObsMatrix(input)
                                        .SetVarianceFactor(VarianceOfUnitWeight)
                                        .SetVtpv(vtpv);

            return(result);
        }
コード例 #18
0
        /// <summary>
        /// 数据计算
        /// </summary>
        /// <param name="input">观测矩阵</param>
        /// <returns></returns>
        public override AdjustResultMatrix Run(AdjustObsMatrix input)
        {
            this.ObsMatrix = input;

            //观测值权阵设置,对已知量赋值
            Matrix L               = new Matrix((IMatrix)input.Observation);
            Matrix QL              = new Matrix(input.Observation.InverseWeight);
            Matrix PL              = new Matrix(QL.GetInverse());
            Matrix A               = new Matrix(input.Coefficient);
            Matrix AT              = A.Trans;
            Matrix B               = new Matrix(input.SecondCoefficient);
            Matrix BT              = B.Trans;
            Matrix X0              = input.HasApprox ? new Matrix(input.ApproxVector, true) : null;
            Matrix Y0              = input.HasSecondApprox ? new Matrix(input.SecondApproxVector, true) : null;
            Matrix D               = input.HasFreeVector ? new Matrix(input.FreeVector, true) : null;
            int    obsCount        = L.RowCount;
            int    fixedParamCount = B.ColCount;

            //观测值更新
            Matrix l = L - (A * X0 + B * Y0 + D); //如果null,则是本身

            Matrix ATPL = AT * PL;
            //法方程
            Matrix Na      = ATPL * A;
            Matrix Nab     = AT * PL * B;
            Matrix InverNa = Na.Inversion;
            Matrix J       = A * InverNa * AT * PL;
            Matrix B2      = (Matrix.CreateIdentity(J.RowCount) - J) * B;
            Matrix AcT     = B2.Trans;
            Matrix Nc      = AcT * PL * B2;;
            Matrix InverNc = Nc.Inversion;
            //平差结果
            Matrix y  = InverNc * AcT * PL * l;
            Matrix Y  = Y0 + y;
            Matrix Qy = InverNc;

            //只针对y的精度评定
            Matrix W   = B2 * y - l;
            double ys0 = (W.Trans * PL * W).FirstValue / (obsCount - fixedParamCount);
            Matrix Dy  = ys0 * Qy;


            //求x
            Matrix lx = L - (A * X0 + B * Y + D); //如果null,则是本身
            Matrix x  = InverNa * ATPL * lx;      //这两个计算是等价的
            // Matrix x = InverNa * (ATPL * l - Nab * y);//这两个计算是等价的
            Matrix X = X0 + x;

            Matrix Ntmp = Na.Inversion * Nab;
            Matrix Qx   = InverNa + Ntmp * Qy * Ntmp.Trans;

            //Matrix Qxy = AT * PL * B;
            //Matrix Qtemp = Qx * Qxy;
            //Matrix QtempT = Qtemp.Trans;
            //Matrix Dx = Qx + Qtemp * Dy * QtempT;

            //精度评定
            Matrix V  = A * x + B * y - l;
            Matrix Qv = QL - A * Qx * AT - B * Qy * BT;

            // Matrix lT = l.Trans;

            double vtpv       = (V.Trans * PL * V)[0, 0];//(lT * PL * l - lT * PL * Ac * y).FirstValue;//
            int    paramCount = A.ColCount + B.ColCount;
            int    freedom    = A.RowCount - paramCount;
            double s0         = vtpv / (freedom == 0 ? 0.1 : freedom);//单位权方差

            WeightedVector estX = new WeightedVector(x, Qx)
            {
                ParamNames = input.ParamNames
            };
            WeightedVector CorrectedEstimate = new WeightedVector(X, Qx)
            {
                ParamNames = input.ParamNames
            };
            WeightedVector estY = new WeightedVector(y, Qy)
            {
                ParamNames = input.SecondParamNames
            };
            WeightedVector estV = new WeightedVector(V, Qv);

            Matrix Lhat         = L + V;
            Matrix QLhat        = A * Qx * AT;
            var    correctedObs = new WeightedVector(Lhat, QLhat)
            {
                ParamNames = this.ObsMatrix.Observation.ParamNames
            };


            if (!DoubleUtil.IsValid(s0))
            {
                log.Error("方差值无效!" + s0);
            }

            AdjustResultMatrix result = new AdjustResultMatrix()
                                        .SetAdjustmentType(AdjustmentType.单期递归最小二乘)
                                        .SetEstimated(estX)
                                        .SetSecondEstimated(estY)
                                        .SetCorrection(estV)
                                        .SetCorrectedObs(correctedObs)
                                        .SetCorrectedEstimate(CorrectedEstimate)
                                        .SetObsMatrix(input)
                                        .SetFreedom(freedom)
                                        .SetVarianceFactor(s0)
                                        .SetVtpv(vtpv);

            return(result);
        }
コード例 #19
0
        public override AdjustResultMatrix Run(AdjustObsMatrix input)
        {
            //u(0<u<t)个独立量为参数,多余观测数r=n-t
            //原始输入 m=r+u
            Matrix A  = input.Coefficient;                                                           //m×t
            Matrix B  = input.SecondCoefficient;                                                     //m×n
            Matrix L  = new Matrix((IMatrix)input.Observation);                                      //n×1
            Matrix QL = new Matrix((IMatrix)input.Observation.InverseWeight);                        //m×m
            Matrix X0 = input.HasApprox ? new Matrix(input.ApproxVector, true) : null;               //u×1
            Matrix D  = input.HasFreeVector ? new Matrix(input.FreeVector, true) : null;             //B0//m×1
            Matrix B0 = input.HasSecondFreeVector ? new Matrix(input.SecondFreeVector, true) : null; //B0//m×1

            Matrix AT = A.Trans;
            Matrix PL = QL.Inversion;
            Matrix BT = B.Trans;

            //多余观测数为r=m-u=n-t
            int obsCount            = L.RowCount;
            int totalConditionCount = B.RowCount;
            int paramCount          = A.ColCount;//u
            int freedom             = obsCount - paramCount;

            //观测值更新
            Matrix l      = L - (A * X0 + D); //如果null,则是本身
            Matrix W      = -(B * X0 - B0);
            Matrix N      = AT * PL * A;
            Matrix U      = AT * PL * l;
            Matrix inverN = N.Inversion;
            // ************************
            //采用分块矩阵直接计算
            int    dimOfX    = N.ColCount; //X的维度
            int    dimOfK    = B.RowCount; //K的维度
            int    dimOfBigN = dimOfK + dimOfX;
            Matrix BigN      = new Matrix(dimOfBigN, dimOfBigN);

            BigN.SetSub(N);
            BigN.SetSub(BT, 0, dimOfX);
            BigN.SetSub(B, dimOfX, 0);

            Matrix inverBigN = BigN.Inversion;
            Matrix bigW      = new Matrix(dimOfBigN, 1);

            bigW.SetSub(U);
            bigW.SetSub(W, U.RowCount);
            Matrix bigX = inverBigN * bigW;

            Matrix x = bigX.GetSub(0, 0, dimOfX);
            Matrix K = bigX.GetSub(dimOfX, 0);

            Matrix X = X0 + x;

            Matrix V    = A * x - l;
            Matrix EstL = L + V;

            //**************精度估计---------------
            Matrix Q11 = inverBigN.GetSub(0, 0, dimOfX, dimOfX);
            Matrix Q12 = inverBigN.GetSub(0, dimOfX, dimOfK);
            Matrix Q21 = inverBigN.GetSub(dimOfX, 0, dimOfK, dimOfK);
            Matrix Q22 = inverBigN.GetSub(dimOfX, dimOfX);

            Matrix Qx    = Q11;
            Matrix QestL = A * Q11 * AT;

            var coWeightedX = new WeightedVector(X, Qx);
            var weightedX   = new WeightedVector(x, Qx);
            var weightedL   = new WeightedVector(EstL, QestL);


            double vtpv = (V.Trans * PL * V).FirstValue;
            double s0   = vtpv / freedom;//单位权中误差估值

            if (!DoubleUtil.IsValid(s0))
            {
                log.Error("方差值无效!" + s0);
            }

            AdjustResultMatrix result = new AdjustResultMatrix()
                                        .SetAdjustmentType(AdjustmentType.具有参数的条件平差)
                                        .SetEstimated(weightedX)
                                        .SetCorrectedEstimate(coWeightedX)
                                        .SetCorrectedObs(weightedL)
                                        .SetObsMatrix(input)
                                        .SetFreedom(freedom)
                                        .SetVarianceFactor(s0)
                                        .SetVtpv(vtpv);

            return(result);
        }
コード例 #20
0
ファイル: AdjustmentResult.cs プロジェクト: yxw027/GNSSer
 /// <summary>
 /// 构造函数
 /// </summary>
 /// <param name="Adjustment">平差结果</param>
 /// <param name="material">原材料</param>
 public AdjustmentResult(AdjustResultMatrix Adjustment, TMaterial material)
 {
     this.ResultMatrix = Adjustment;
     this.Material     = material;
 }
コード例 #21
0
 /// <summary>
 /// 一维滤波矩阵构造器
 /// </summary>
 /// <param name="obs"></param>
 /// <param name="PrevAdjustment"></param>
 public OneDimAdjustMatrixBuilder(double obs, AdjustResultMatrix PrevAdjustment = null, double rmsOrStdDev = 1)
     : this(new RmsedNumeral(obs, rmsOrStdDev))
 {
 }