コード例 #1
0
        private static Task<ApplyResult> ApplyExtract_DoIt_Task(Convolution2D imageConv, FeatureRecognizer_Extract extract, FeatureRecognizer_Extract_Sub sub)
        {
            return Task.Run(() =>
            {
                VectorInt totalReduce = sub.Extract.GetReduction();

                Convolution2D finalImage = imageConv;
                if (extract.PreFilter != null)
                {
                    finalImage = Convolutions.Convolute(imageConv, extract.PreFilter);      //TODO: The final worker method shouldn't do this if too small.  I'm just doing it to show the user something
                    totalReduce += extract.PreFilter.GetReduction();
                }

                if (imageConv.Width <= totalReduce.X || imageConv.Height <= totalReduce.Y)
                {
                    // Too small, exit early
                    return new ApplyResult(finalImage, null, null);
                }

                // Apply convolutions
                Convolution2D filtered = Convolutions.Convolute(finalImage, sub.Extract);

                // Look at the brightest spots, and see if they are matches
                var matches = AnalyzeBrightSpots(filtered, sub.Results);

                return new ApplyResult(finalImage, filtered, matches);
            });
        }
コード例 #2
0
        private void BuildChangedExtract(FeatureRecognizer_Extract origExtract, Convolution2D newConv)
        {
            var image = _images.FirstOrDefault(o => o.UniqueID == origExtract.ImageID);
            if (image == null)
            {
                throw new ApplicationException("Couldn't find the image that the original extract references");
            }

            // Image convolution
            Convolution2D imageConv = ((BitmapCustomCachedBytes)UtilityWPF.ConvertToColorArray(image.Bitmap, false, Colors.Transparent)).ToConvolution();
            if (origExtract.PreFilter != null)
            {
                imageConv = Convolutions.Convolute(imageConv, origExtract.PreFilter);
            }

            //NOTE: The original extract contains multiple sizes (reductions of the largest one).  But since this convolution is derived from
            //the largest extract, it would be difficult to reduce.  So only keeping the highest resolution image
            FeatureRecognizer_Extract_Sub resultPatch = BuildExtractResult(imageConv, newConv);

            FinishBuildingExtract(origExtract.PreFilter, new[] { resultPatch }, origExtract.ImageID);
        }
コード例 #3
0
        private async static void ApplyExtract_DoIt(Grid grid, FeatureRecognizer_Image image, FeatureRecognizer_Extract extract, FeatureRecognizer_Extract_Sub sub, ConvolutionResultNegPosColoring edgeColor, ContextMenu contextMenu)
        {
            // Source image
            BitmapSource bitmap;
            if (sub.InputWidth == image.Bitmap.PixelWidth && sub.InputHeight == image.Bitmap.PixelHeight)
            {
                bitmap = image.Bitmap;
            }
            else
            {
                bitmap = UtilityWPF.ResizeImage(image.Bitmap, sub.InputWidth, sub.InputHeight);
            }

            Convolution2D imageConv = ((BitmapCustomCachedBytes)UtilityWPF.ConvertToColorArray(bitmap, false, Colors.Transparent)).ToConvolution();

            // Convolute, look for matches
            var results = await ApplyExtract_DoIt_Task(imageConv, extract, sub);

            #region Show results

            // Left Image
            ApplyExtract_Draw_LeftImage(grid, results.ImageConv, extract.PreFilter, edgeColor);

            // Right Image
            if (results.Filtered != null)
            {
                ApplyExtract_Draw_RightImage(grid, results.Filtered, edgeColor);
            }

            // Matches
            if (results.Matches != null && results.Matches.Length > 0)
            {
                ApplyExtract_Draw_Matches(grid, results.Matches, results.Filtered.Size, sub, contextMenu);
            }

            #endregion
        }
コード例 #4
0
        private void ApplyExtract(FeatureRecognizer_Image image, FeatureRecognizer_Extract extract)
        {
            pnlExtractResults.Children.Clear();

            ConvolutionResultNegPosColoring edgeColor = (ConvolutionResultNegPosColoring)cboEdgeColors.SelectedValue;

            foreach (var sub in extract.Extracts)
            {
                // Create a panel that will hold the result
                Grid grid = new Grid();
                if (pnlExtractResults.Children.Count > 0)
                {
                    grid.Margin = new Thickness(0, 10, 0, 0);
                }

                grid.ColumnDefinitions.Add(new ColumnDefinition() { Width = new GridLength(1, GridUnitType.Star) });
                grid.ColumnDefinitions.Add(new ColumnDefinition() { Width = new GridLength(5, GridUnitType.Pixel) });
                grid.ColumnDefinitions.Add(new ColumnDefinition() { Width = new GridLength(1, GridUnitType.Star) });

                grid.RowDefinitions.Add(new RowDefinition() { Height = new GridLength(1, GridUnitType.Auto) });
                grid.RowDefinitions.Add(new RowDefinition() { Height = new GridLength(5, GridUnitType.Pixel) });
                grid.RowDefinitions.Add(new RowDefinition() { Height = new GridLength(1, GridUnitType.Auto) });

                pnlExtractResults.Children.Add(grid);

                // Do the work in another thread
                ApplyExtract_DoIt(grid, image, extract, sub, edgeColor, _extractResultContextMenu);
            }
        }
コード例 #5
0
        private void EditConvolution(FeatureRecognizer_Extract extract)
        {
            ImageFilterPainter viewer = new ImageFilterPainter();

            viewer.Closed += Child_Closed;
            viewer.SaveRequested += Painter_SaveRequested;

            _childWindows.Add(viewer);

            viewer.Tag = extract;
            viewer.EditKernel((Convolution2D)extract.Extracts[0].Extract);      // give it the highest resolution one

            viewer.Show();
        }
コード例 #6
0
 private void AddExtract(FeatureRecognizer_Extract extract)
 {
     panelExtracts.Children.Add(extract.Control);
     _extracts.Add(extract);
 }
コード例 #7
0
        private void FinishBuildingExtract(ConvolutionBase2D filter, FeatureRecognizer_Extract_Sub[] subs, string imageID)
        {
            string uniqueID = Guid.NewGuid().ToString();

            // Determine filename
            string filename = "extract - " + uniqueID + ".xml";
            string fullFilename = System.IO.Path.Combine(_workingFolder, filename);

            // Add it
            FeatureRecognizer_Extract extract = new FeatureRecognizer_Extract()
            {
                Extracts = subs,
                PreFilter = filter,
                Control = Convolutions.GetThumbnail(subs[0].Extract, THUMBSIZE_EXTRACT, _extractContextMenu),
                ImageID = imageID,
                UniqueID = uniqueID,
                Filename = filename,
            };

            if (extract.PreFilter != null && extract.PreFilter is Convolution2D)
            {
                extract.PreFilterDNA_Single = ((Convolution2D)extract.PreFilter).ToDNA();
            }
            else if (extract.PreFilter != null && extract.PreFilter is ConvolutionSet2D)
            {
                extract.PreFilterDNA_Set = ((ConvolutionSet2D)extract.PreFilter).ToDNA();
            }

            // Copy to the working folder
            UtilityCore.SerializeToFile(fullFilename, extract);

            AddExtract(extract);

            // Update the session file
            SaveSession_SessionFile(_workingFolder);
        }