コード例 #1
0
ファイル: Program.cs プロジェクト: adrianseeley/CART
        static void spiral ()
        {
            Dataset train = Dataset.GenerateSpiral(0, 0, 1, 1, 0.1f, 1000, 10, 100);
            train.WriteCSV("./data/spiral_train.csv", true);

            Dataset test = Dataset.CloneInputSet(train);
            DecisionForest df = new DecisionForest(train, 10, 30, 20);
            for (int row = 0; row < test.Inputs.Count; row++)
            {
                List<float> outputs = new List<float>();
                outputs.Add(df.Classify(test.Inputs[row]));
                test.Outputs.Add(outputs);
            }
            test.WriteCSV("./data/spiral_test.csv", true);
        }
コード例 #2
0
ファイル: Program.cs プロジェクト: adrianseeley/CART
        static void ocr ()
        {
            OCRDataset train = new OCRDataset();
            train.ReadTrainCSV("./data/ocr_train.csv");

            OCRDataset test = new OCRDataset();
            test.ReadTestCSV("./data/ocr_test.csv");

            DecisionForest df = new DecisionForest(train, 20000, 1000, 10000);
            for (int row = 0; row < test.Inputs.Count; row++)
            {
                Console.WriteLine("i: " + row + "/" + test.Inputs.Count);
                List<float> outputs = new List<float>();
                outputs.Add(df.Classify(test.Inputs[row]));
                test.Outputs.Add(outputs);
            }
            test.WriteTestCSV("./data/ocr_est.csv");
        }
コード例 #3
0
ファイル: Program.cs プロジェクト: adrianseeley/CART
        static void fin()
        {
            Dataset train = new Dataset();
            train.ReadCSV("./data/validate.win", 2000, false);

            Dataset test = new Dataset();
            test.Inputs.Add(train.Inputs[train.Inputs.Count - 1]);

            DecisionForest df = new DecisionForest(train, 10, 500, 500);
            for (int row = 0; row < test.Inputs.Count; row++)
            {
                Console.WriteLine("i: " + row + "/" + test.Inputs.Count);
                List<float> outputs = new List<float>();
                outputs.Add(df.Classify(test.Inputs[row]));
                test.Outputs.Add(outputs);
            }
            test.WriteCSV("./data/est.win", false);
        }
コード例 #4
0
 public static float Fitness (DecisionForest DecisionForest, Dataset Validation)
 {
     int correct = 0;
     for (int row = 0; row < Validation.Inputs.Count; row++)
     {
         if (Validation.Outputs[row][0] == DecisionForest.Classify(Validation.Inputs[row]))
         {
             correct++;
         }
     }
     return ((float)correct) / ((float)Validation.Inputs.Count);
 }