コード例 #1
0
        public static void RandomMonteCarlo(string Filename, Dataset Train, int NumberOfTrainingSamplesMin, int NumberOfTrainingSamplesMax, int NumberOfDecisionTreesMin, int NumberOfDecisionTreesMax, int MaxTreeDepthMin, int MaxTreeDepthMax, int SamplesPerTreeMin, int SamplesPerTreeMax)
        {
            StringBuilder sb = new StringBuilder();
            sb.AppendLine("numberOfTrainingSamples,numberofDecisionTrees,maxTreeDepth,samplesPerTree,fitness");

            while (true)
            {
                int numberOfTrainingSamples = RNG.Next(NumberOfTrainingSamplesMin, NumberOfTrainingSamplesMax);
                int numberOfDecisionTrees = RNG.Next(NumberOfDecisionTreesMin, NumberOfDecisionTreesMax);
                int maxTreeDepth = RNG.Next(MaxTreeDepthMin, MaxTreeDepthMax);
                int samplesPerTree = RNG.Next(SamplesPerTreeMin, SamplesPerTreeMax);

                if (samplesPerTree > numberOfTrainingSamples)
                {
                    samplesPerTree = numberOfTrainingSamples;
                }

                Dataset currentTrain = new Dataset();
                currentTrain.Inputs.AddRange(Train.Inputs.GetRange(0, numberOfTrainingSamples));
                currentTrain.Outputs.AddRange(Train.Outputs.GetRange(0, numberOfTrainingSamples));
                Dataset currentValidation = new Dataset();
                currentValidation.Inputs.AddRange(Train.Inputs.GetRange(numberOfTrainingSamples, Train.Inputs.Count - numberOfTrainingSamples));
                currentValidation.Outputs.AddRange(Train.Outputs.GetRange(numberOfTrainingSamples, Train.Inputs.Count - numberOfTrainingSamples));
                DecisionForest df = new DecisionForest(currentTrain, numberOfDecisionTrees, maxTreeDepth, samplesPerTree);
                float fitness = Fitness(df, currentValidation);
                string line = numberOfTrainingSamples + "," + numberOfDecisionTrees + "," + maxTreeDepth + "," + samplesPerTree + "," + fitness;
                sb.AppendLine(line);
                Console.WriteLine(line);
                using (StreamWriter sw = new StreamWriter(Filename))
                {
                    sw.Write(sb.ToString());
                }
            }
        }
コード例 #2
0
 public static float Fitness (DecisionForest DecisionForest, Dataset Validation)
 {
     int correct = 0;
     for (int row = 0; row < Validation.Inputs.Count; row++)
     {
         if (Validation.Outputs[row][0] == DecisionForest.Classify(Validation.Inputs[row]))
         {
             correct++;
         }
     }
     return ((float)correct) / ((float)Validation.Inputs.Count);
 }
コード例 #3
0
ファイル: Program.cs プロジェクト: adrianseeley/CART
        static void spiral ()
        {
            Dataset train = Dataset.GenerateSpiral(0, 0, 1, 1, 0.1f, 1000, 10, 100);
            train.WriteCSV("./data/spiral_train.csv", true);

            Dataset test = Dataset.CloneInputSet(train);
            DecisionForest df = new DecisionForest(train, 10, 30, 20);
            for (int row = 0; row < test.Inputs.Count; row++)
            {
                List<float> outputs = new List<float>();
                outputs.Add(df.Classify(test.Inputs[row]));
                test.Outputs.Add(outputs);
            }
            test.WriteCSV("./data/spiral_test.csv", true);
        }
コード例 #4
0
ファイル: Program.cs プロジェクト: adrianseeley/CART
        static void ocr ()
        {
            OCRDataset train = new OCRDataset();
            train.ReadTrainCSV("./data/ocr_train.csv");

            OCRDataset test = new OCRDataset();
            test.ReadTestCSV("./data/ocr_test.csv");

            DecisionForest df = new DecisionForest(train, 20000, 1000, 10000);
            for (int row = 0; row < test.Inputs.Count; row++)
            {
                Console.WriteLine("i: " + row + "/" + test.Inputs.Count);
                List<float> outputs = new List<float>();
                outputs.Add(df.Classify(test.Inputs[row]));
                test.Outputs.Add(outputs);
            }
            test.WriteTestCSV("./data/ocr_est.csv");
        }
コード例 #5
0
ファイル: Program.cs プロジェクト: adrianseeley/CART
        static void fin()
        {
            Dataset train = new Dataset();
            train.ReadCSV("./data/validate.win", 2000, false);

            Dataset test = new Dataset();
            test.Inputs.Add(train.Inputs[train.Inputs.Count - 1]);

            DecisionForest df = new DecisionForest(train, 10, 500, 500);
            for (int row = 0; row < test.Inputs.Count; row++)
            {
                Console.WriteLine("i: " + row + "/" + test.Inputs.Count);
                List<float> outputs = new List<float>();
                outputs.Add(df.Classify(test.Inputs[row]));
                test.Outputs.Add(outputs);
            }
            test.WriteCSV("./data/est.win", false);
        }
コード例 #6
0
 public static void IterativeMonteCarlo (string Filename, Dataset Train, int NumberOfTrainingSamplesMin, int NumberOfTrainingSamplesMax, int NumberOfDecisionTreesMin, int NumberOfDecisionTreesMax, int MaxTreeDepthMin, int MaxTreeDepthMax, int SamplesPerTreeMin, int SamplesPerTreeMax)
 {
     StringBuilder sb = new StringBuilder();
     sb.AppendLine("numberOfTrainingSamples,numberofDecisionTrees,maxTreeDepth,samplesPerTree,fitness");
     for (int numberOfTrainingSamples = NumberOfDecisionTreesMin; numberOfTrainingSamples <= NumberOfDecisionTreesMax; numberOfTrainingSamples += 1)
     {
         for (int numberOfDecisionTrees = NumberOfDecisionTreesMin; numberOfDecisionTrees <= NumberOfDecisionTreesMax; numberOfDecisionTrees += 1)
         {
             for (int maxTreeDepth = MaxTreeDepthMin; maxTreeDepth <= MaxTreeDepthMax; maxTreeDepth += 1)
             {
                 for (int samplesPerTree = SamplesPerTreeMin; samplesPerTree <= SamplesPerTreeMax && samplesPerTree <= numberOfTrainingSamples; samplesPerTree += 1)
                 {
                     Dataset currentTrain = new Dataset();
                     currentTrain.Inputs.AddRange(Train.Inputs.GetRange(0, numberOfTrainingSamples));
                     currentTrain.Outputs.AddRange(Train.Outputs.GetRange(0, numberOfTrainingSamples));
                     Dataset currentValidation = new Dataset();
                     currentValidation.Inputs.AddRange(Train.Inputs.GetRange(numberOfTrainingSamples, Train.Inputs.Count - numberOfTrainingSamples));
                     currentValidation.Outputs.AddRange(Train.Outputs.GetRange(numberOfTrainingSamples, Train.Inputs.Count - numberOfTrainingSamples));
                     DecisionForest df = new DecisionForest(currentTrain, numberOfDecisionTrees, maxTreeDepth, samplesPerTree);
                     float fitness = Fitness(df, currentValidation);
                     string line = numberOfTrainingSamples + "," + numberOfDecisionTrees + "," + maxTreeDepth + "," + samplesPerTree + "," + fitness;
                     sb.AppendLine(line);
                     Console.WriteLine(line);
                     using (StreamWriter sw = new StreamWriter(Filename))
                     {
                         sw.Write(sb.ToString());
                     }
                 }
             }
         }
     }
     using (StreamWriter sw = new StreamWriter(Filename))
     {
         sw.Write(sb.ToString());
     }
 }