Inheritance: IFittingOptions
コード例 #1
0
        public void FitTest()
        {
            double[] coefficients = { 0.50, 0.50 };

            NormalDistribution[] components = new NormalDistribution[2];
            components[0] = new NormalDistribution(2, 1);
            components[1] = new NormalDistribution(5, 1);

            var target = new Mixture<NormalDistribution>(coefficients, components);

            double[] values = { 0, 1, 1, 0, 1, 6, 6, 5, 7, 5 };
            double[] part1 = values.Submatrix(0, 4);
            double[] part2 = values.Submatrix(5, 9);

            MixtureOptions options = new MixtureOptions() { Threshold = 1e-10 };

            target.Fit(values, options);
            var actual = target;

            var mean1 = Accord.Statistics.Tools.Mean(part1);
            var var1 = Accord.Statistics.Tools.Variance(part1);
            Assert.AreEqual(mean1, actual.Components[0].Mean, 1e-6);
            Assert.AreEqual(var1, actual.Components[0].Variance, 1e-6);

            var mean2 = Accord.Statistics.Tools.Mean(part2);
            var var2 = Accord.Statistics.Tools.Variance(part2);
            Assert.AreEqual(mean2, actual.Components[1].Mean, 1e-6);
            Assert.AreEqual(var2, actual.Components[1].Variance, 1e-5);

            var expectedMean = Accord.Statistics.Tools.Mean(values);
            var actualMean = actual.Mean;
            Assert.AreEqual(expectedMean, actualMean, 1e-7);

            var expectedVar = Accord.Statistics.Tools.Variance(values, false);
            var actualVar = actual.Variance;
            Assert.AreEqual(expectedVar, actualVar, 0.15);
        }
コード例 #2
0
        public void FitTest2()
        {
            double[] coefficients = { 0.50, 0.50 };

            NormalDistribution[] components = new NormalDistribution[2];
            components[0] = new NormalDistribution(2, 1);
            components[1] = new NormalDistribution(5, 1);

            var target = new Mixture<NormalDistribution>(coefficients, components);

            double[] values =  { 12512, 1, 1, 0, 1, 6, 6, 5, 7, 5 };
            double[] weights = {     0, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
            weights = weights.Divide(weights.Sum());
            double[] part1 = values.Submatrix(1, 4);
            double[] part2 = values.Submatrix(5, 9);

            MixtureOptions opt = new MixtureOptions()
            {
                Threshold = 0.000001
            };

            target.Fit(values, weights, opt);

            var mean1 = Accord.Statistics.Tools.Mean(part1);
            var var1 = Accord.Statistics.Tools.Variance(part1);
            Assert.AreEqual(mean1, target.Components[0].Mean, 1e-5);
            Assert.AreEqual(var1, target.Components[0].Variance, 1e-5);

            var mean2 = Accord.Statistics.Tools.Mean(part2);
            var var2 = Accord.Statistics.Tools.Variance(part2);
            Assert.AreEqual(mean2, target.Components[1].Mean, 1e-5);
            Assert.AreEqual(var2, target.Components[1].Variance, 1e-5);

            var expectedMean = Accord.Statistics.Tools.WeightedMean(values, weights);
            var actualMean = target.Mean;
            Assert.AreEqual(expectedMean, actualMean, 1e-5);
        }
コード例 #3
0
        /// <summary>
        ///   Creates a Baum-Welch with default configurations for
        ///   hidden Markov models with normal mixture densities.
        /// </summary>
        /// 
        public static BaumWelchLearning<MultivariateMixture<MultivariateNormalDistribution>> FromMixtureModel(
            HiddenMarkovModel<MultivariateMixture<MultivariateNormalDistribution>> model, NormalOptions options)
        {
            MixtureOptions mixOptions = new MixtureOptions()
            {
                Iterations = 1,
                InnerOptions = options
            };

            return new BaumWelchLearning<MultivariateMixture<MultivariateNormalDistribution>>(model)
            {
                FittingOptions = mixOptions
            };
        }