コード例 #1
0
        /// <summary>
        ///   Divides the input data into K clusters modeling each
        ///   cluster as a multivariate Gaussian distribution.
        /// </summary>
        ///
        public int[] Compute(double[][] data, double[] weights)
        {
            if (clusters.Model == null)
            {
                Initialize(data, weights);
            }

            // Create the mixture options
            var mixtureOptions = new MixtureOptions()
            {
                Threshold    = this.Tolerance,
                InnerOptions = this.Options,
                Iterations   = this.Iterations,
                Logarithm    = this.UseLogarithm
            };

            MultivariateMixture <MultivariateNormalDistribution> model = clusters.Model;

            // Fit a multivariate Gaussian distribution
            model.Fit(data, weights, mixtureOptions);

            for (int i = 0; i < clusters.Model.Components.Length; i++)
            {
                clusters.Centroids[i] = new MixtureComponent <MultivariateNormalDistribution>(model, i);
            }

            if (ComputeLogLikelihood)
            {
                LogLikelihood = model.LogLikelihood(data);
            }

            if (ComputeLabels)
            {
                return(clusters.Nearest(data));
            }

            return(null);
        }
コード例 #2
0
 int[] IClusteringAlgorithm <double[]> .Compute(double[][] data, double threshold)
 {
     Compute(data, threshold);
     return(clusters.Nearest(data));
 }