public void CreateAndCompileModel2() { Console.WriteLine("Creating model"); GlobalRandom.InitializeRandom(); int imgSize = 75; ReluActivation reluActivation = new ReluActivation(); SoftmaxActivation softmaxActivation = new SoftmaxActivation(); SigmoidActivation sigmoidActivation = new SigmoidActivation(); model = new ConvolutionalNeuralNetwork(imgSize, "grayscale"); model.Add(new ConvolutionalLayer(5, 5, reluActivation, "valid")); model.Add(new MaxPoolingLayer()); model.Add(new ConvolutionalLayer(5, 3, reluActivation, "valid")); model.Add(new MaxPoolingLayer()); model.Add(new DropoutLayer(0.2)); model.Add(new FlattenLayer()); model.Add(new DropoutLayer(0.5)); model.Add(new DenseLayer(26, sigmoidActivation)); Console.WriteLine("Model created"); model.Compile(); Console.WriteLine("Model compiled"); }
public void CreateAndCompileModelMnist() { Console.WriteLine("Creating model"); GlobalRandom.InitializeRandom(); int imgSize = 28; NoActivation noActivation = new NoActivation(); SoftmaxActivation softmaxActivation = new SoftmaxActivation(); model = new ConvolutionalNeuralNetwork(imgSize, "grayscale"); model.Add(new ConvolutionalLayer(8, 3, noActivation, "valid")); model.Add(new MaxPoolingLayer()); model.Add(new FlattenLayer()); model.Add(new DenseLayer(10, softmaxActivation)); Console.WriteLine("Model created"); model.Compile(); Console.WriteLine("Model compiled"); }