コード例 #1
0
        public static void Run()
        {
            //Load train data
            NDarray x = np.array(new float[, ] {
                { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 }
            });
            NDarray y = np.array(new float[] { 0, 1, 1, 0 });

            //Build sequential model
            var model = new Sequential();

            model.Add(new Dense(32, activation: "relu", input_shape: new Shape(2)));
            model.Add(new Dense(64, activation: "relu"));
            model.Add(new Dense(1, activation: "sigmoid"));

            //Compile and train
            model.Compile(optimizer: new Adam(), loss: "binary_crossentropy", metrics: new string[] { "accuracy" });
            var history = model.Fit(x, y, batch_size: 2, epochs: 10, verbose: 1);
            var weights = model.GetWeights();

            model.SetWeights(weights);
            var logs = history.HistoryLogs;
            //Save model and weights
            string json = model.ToJson();

            File.WriteAllText("model.json", json);
            model.SaveWeight("model.h5");

            //Load model and weight
            var loaded_model = Sequential.ModelFromJson(File.ReadAllText("model.json"));

            loaded_model.LoadWeight("model.h5");
        }
コード例 #2
0
        public void Dense_CustomKRegularizerAndKInitParams()
        {
            NDarray x = np.array(new float[, ] {
                { 1, 0 }, { 1, 1 }, { 1, 0 }, { 1, 1 }
            });
            NDarray y = np.array(new float[] { 0, 1, 1, 0 });

            var model = new Sequential();

            model.Add(new Dense(1, activation: "sigmoid", input_shape: new Shape(x.shape[1]), kernel_regularizer: new L1L2(1000, 2000), kernel_initializer: new Constant(100)));

            var modelAsJson = JsonConvert.DeserializeObject <dynamic>(model.ToJson());

            Assert.AreEqual("Sequential", modelAsJson.class_name.Value);
            int i = 0;

            while (modelAsJson.config.layers[i].config.kernel_initializer == null && i < 3)
            {
                i++;
            }
            Assert.AreEqual(100, modelAsJson.config.layers[i].config.kernel_initializer.config.value.Value);
            Assert.AreEqual("Constant", modelAsJson.config.layers[i].config.kernel_initializer.class_name.Value);

            Assert.AreEqual("L1L2", modelAsJson.config.layers[i].config.kernel_regularizer.class_name.Value);
            Assert.AreEqual(1000, modelAsJson.config.layers[i].config.kernel_regularizer.config.l1.Value);
            Assert.AreEqual(2000, modelAsJson.config.layers[i].config.kernel_regularizer.config.l2.Value);

            // Compile and train
            model.Compile(optimizer: new Adam(lr: 0.001F), loss: "binary_crossentropy", metrics: new string[] { "accuracy" });
            model.Fit(x, y, batch_size: x.shape[0], epochs: 100, verbose: 0);
            Assert.AreEqual(2, model.GetWeights().Count);
        }