コード例 #1
0
        public EmotionModel()
        {
            modelPathMap = new Dictionary <string, string>(); // 模型路径信息
            modelPathMap.Add("混合模型(5秒)", Environment.CurrentDirectory + "\\models\\data_after_boardline_smote.scale.model");
            modelPathMap.Add("混合模型(10秒)", Environment.CurrentDirectory + "\\models\\data_after_boardline_smote_and_pca_with_49.scale.model");
            modelPathMap.Add("交互模型(5秒)", Environment.CurrentDirectory + "\\models\\data_after_undersampling.scale.model");
            modelPathMap.Add("交互模型(10秒)", Environment.CurrentDirectory + "\\models\\data_after_undersampling_and_pca_with_49.scale.model");
            modelPathMap.Add("人像模型", Environment.CurrentDirectory + "\\models\\data_after_undersampling_and_pca_with_49.scale.model");
            svmModel = SVM.LoadModel(modelPathMap["混合模型(5秒)"]); // 加载默认模型
            // 初始化特征向量
            for (int i = 0; i < featureNum; i++)
            {
                svmFeature[i] = new SVMNode(i, 0);
            }


            //indexEmotionMap.Add(1, 1);
            //indexEmotionMap.Add(4, 2);
            //indexEmotionMap.Add(5, 3);
            //indexEmotionMap.Add(6, 4);
            //indexEmotionMap.Add(7, 5);
            //indexEmotionMap.Add(8, 6);
            //indexEmotionMap.Add(9, 7);
            //indexEmotionMap.Add(10, 8);
            //indexEmotionMap.Add(11, 9);
        }
コード例 #2
0
ファイル: SVMManage.cs プロジェクト: tome-beta/FaceJudge
        //作成した辞書を図でみる
        public void Debug_DispPredict()
        {
            return;

            //辞書ファイルのロード
            this.libSVM_model = SVM.LoadModel(@"libsvm_model.xml");

            using (IplImage retPlot = new IplImage(300, 300, BitDepth.U8, 3))
            {
                for (int x = 0; x < 300; x++)
                {
                    for (int y = 0; y < 300; y++)
                    {
                        float[] sample = { x / 300f, y / 300f };
                        //問題を作成
                        SVMNode[] node_array = new SVMNode[2];
                        node_array[0] = new SVMNode(1, sample[0]);
                        node_array[1] = new SVMNode(2, sample[1]);
                        int    ret_double = (int)SVM.Predict(libSVM_model, node_array);
                        int    ret_i      = (int)ret_double;
                        CvRect plotRect   = new CvRect(x, 300 - y, 1, 1);
                        if (ret_i == 1)
                        {
                            retPlot.Rectangle(plotRect, CvColor.Red);
                        }
                        else if (ret_i == 2)
                        {
                            retPlot.Rectangle(plotRect, CvColor.GreenYellow);
                        }
                    }
                }
                CvWindow.ShowImages(retPlot);
            }
        }
コード例 #3
0
ファイル: Program.cs プロジェクト: rennisa/cozy
        private static void TestOne(string prefix)
        {
            SVMModel   model   = SVM.LoadModel(MnistDataPath + "model.txt");
            SVMProblem testSet = SVMProblemHelper.Load(MnistDataPath + prefix + ".txt");

            testSet = testSet.Normalize(SVMNormType.L2);
            double[] testResults = testSet.Predict(model);
            Console.WriteLine("\nTest result: " + testResults[0].ToString());
        }
コード例 #4
0
        private void btnLoadModel_Click(object sender, EventArgs e)
        {
            parameter = load_json_file(parameter_file);
            string size = parameter["resize"];

            sizes2     = new OpenCvSharp.Size(Convert.ToInt32(size.Split(',')[0]), Convert.ToInt32(size.Split(',')[1]));
            model_load = SVM.LoadModel(parameter["path_model"] + comboBox1.Text);
            MessageBox.Show("Load model completed");
        }
コード例 #5
0
ファイル: Program.cs プロジェクト: rennisa/cozy
        private static void Test(string prefix)
        {
            SVMModel   model   = SVM.LoadModel(MnistDataPath + "model.txt");
            SVMProblem testSet = SVMProblemHelper.Load(MnistDataPath + prefix + ".txt");

            testSet = testSet.Normalize(SVMNormType.L2);
            double[] testResults = testSet.Predict(model);
            int[,] confusionMatrix;
            double testAccuracy = testSet.EvaluateClassificationProblem(testResults, model.Labels, out confusionMatrix);

            Console.WriteLine("\nTest accuracy: " + testAccuracy);
        }
コード例 #6
0
        public void LibsvmFirstLook()
        {
            var prob = new SVMProblem();

            prob.Add(new[] { new SVMNode(1, 1), new SVMNode(2, 0), new SVMNode(3, 1) }, 1);
            prob.Add(new[] { new SVMNode(1, -1), new SVMNode(2, 0), new SVMNode(3, -1) }, -1);
            var param = new SVMParameter();

            param.Kernel = SVMKernelType.LINEAR;
            param.C      = 10;
            var m = prob.Train(param);

            TestOutput(m.Predict(new [] { new SVMNode(1, 1), new SVMNode(2, 1), new SVMNode(3, 1) }));
            m.SaveModel("trainModel");
            var ml = SVM.LoadModel("trainModel");

            TestOutput(ml.Predict(new[] { new SVMNode(1, 1), new SVMNode(2, 1), new SVMNode(3, 1) }));
        }
コード例 #7
0
ファイル: SVMManage.cs プロジェクト: tome-beta/FaceJudge
        //SVM判定
        public int SVMPredict(FaceFeature.FeatureValue feature)
        {
            //学習ファイルを読み込んでいなかったらロード
            if (this.LoadFlag == false)
            {
                this.libSVM_model = SVM.LoadModel(@"model_FaceFeature.xml");
                this.LoadFlag     = true;
            }

            //スケーリングファイルを読み込む あれば
            if (this.LoadScaleFlag == false && JudgeGUII.APPSetting.NORMALIZE_USE)
            {
                this.LoadScaleFlag = ReadScaleFile(@"out/normalize_scale.csv");
            }

            double[] feature_array = new double[FEATURE_COUNT];
            int      answer        = 0;

            {
                SetFeatureToArray(feature, ref feature_array);
                //ここでスケーリングのデータを読み込んでいたら使う
                if (this.LoadScaleFlag == true && JudgeGUII.APPSetting.NORMALIZE_USE)
                {
                    execNormalize(ref feature_array);
                }

                //問題を作成
                SVMNode[] node_array = new SVMNode[FEATURE_COUNT];

                for (int i = 0; i < FEATURE_COUNT; i++)
                {
                    node_array[i] = new SVMNode(i + 1, feature_array[i]);
                }

                answer = (int)SVM.Predict(libSVM_model, node_array);
                return(answer);
            }
        }
コード例 #8
0
        private void pictureBox1_MouseDown(object sender, MouseEventArgs e)
        {
            if (e.Button == MouseButtons.Left)
            {
                int selIndex = 0;

                if (radioButton1.Checked)
                {
                    selIndex = 0;
                }
                if (radioButton2.Checked)
                {
                    selIndex = 1;
                }
                if (radioButton3.Checked)
                {
                    selIndex = 2;
                }
                if (radioButton4.Checked)
                {
                    selIndex = 3;
                }

                mList.Add(new DataInfo(selIndex, e.X, e.Y));

                Draw();
            }
            else if (e.Button == MouseButtons.Right)
            {
                SVMNode[] node = new SVMNode[2];
                node[0] = new SVMNode(1, (double)e.X / (double)mWidth);
                node[1] = new SVMNode(2, (double)e.Y / (double)mHeight);

                SVMModel model  = SVM.LoadModel(FILE_MODEL);
                double   result = SVM.Predict(model, node);
                Console.WriteLine("result=" + result);
            }
        }
コード例 #9
0
ファイル: SVMClass.cs プロジェクト: pinkiepanda/MouseApp
 public static SVMModel getExistingModel()
 {
     //MessageBox.Show("Model Exists");
     return(SVM.LoadModel(Constants.MODEL_PATH));
 }
コード例 #10
0
ファイル: Program.cs プロジェクト: src8655/sku
 //학습모델 로드
 public static SVMModel SVM_LoadModel(String model)
 {
     return(SVM.LoadModel(model));
 }
コード例 #11
0
        static void Main(string[] args)
        {
            // Load the datasets: In this example I use the same datasets for training and testing which is not suggested
            SVMProblem trainingSet = SVMProblemHelper.Load(@"C:\Users\temp\Desktop\ADLfall_train.txt");
            //    SVMProblem testSet = SVMProblemHelper.Load(@"C:\Users\temp\Desktop\ADLfall_test.txt");
            SVMProblem testSet1 = SVMProblemHelper.Load(@"C:\Users\temp\Desktop\ADLfall_test1.txt");

            // SVMProblem testSet1 = SVMProblemHelper.Load(@"C:\Users\temp\Desktop\result.txt");

            // Normalize the datasets if you want: L2 Norm => x / ||x||
            trainingSet = trainingSet.Normalize(SVMNormType.L2);
            //   testSet = testSet.Normalize(SVMNormType.L2);
            testSet1 = testSet1.Normalize(SVMNormType.L2);
            // Select the parameter set

            SVMParameter parameter = new SVMParameter();

            parameter.Type   = SVMType.C_SVC;
            parameter.Kernel = SVMKernelType.RBF;
            parameter.C      = 32768.0;
            parameter.Gamma  = 8.0;


            // Do cross validation to check this parameter set is correct for the dataset or not
            double[] crossValidationResults; // output labels
            int      nFold = 5;
            //  trainingSet1.CrossValidation(parameter, nFold, out crossValidationResults);

            // Evaluate the cross validation result
            // If it is not good enough, select the parameter set again
            //  double crossValidationAccuracy = trainingSet.EvaluateClassificationProblem(crossValidationResults);

            // Train the model, If your parameter set gives good result on cross validation
            //   SVMModel model = trainingSet.Train(parameter);


            // Save the model
            //   SVM.SaveModel(model, @"Model\activity_recognition.txt");
            SVMModel model = SVM.LoadModel(@"Model\activity_recognition.txt");

            int    p, q, w, e, r, ok = 0;
            double sum;

            q = 0;
            w = 0;
            e = 0;
            r = 0;
            // Predict the instances in the test set
            double[] testResults = testSet1.Predict(model);

            while (ok < testSet1.Length)
            {
                var resut = model.Predict(testSet1.X[ok]);
                //    Console.WriteLine("resut111:" + resut);
                p = Convert.ToInt16(resut);
                switch (p)

                {
                case 1:
                    q++;
                    break;

                case 2:
                    w++;
                    break;

                case 3:
                    e++;
                    break;

                case 4:
                    r++;
                    break;
                }

                ok++;
            }
            sum = q + w + e + r;


            Console.WriteLine("result:" + Math.Round(q / sum, 2) + "," + Math.Round(w / sum, 2) + "," + Math.Round(e / sum, 2) + "," + Math.Round(r / sum, 2));
            // Evaluate the test results

            int[,] confusionMatrix;
            double testAccuracy = testSet1.EvaluateClassificationProblem(testResults, model.Labels, out confusionMatrix);

            // Print the resutls
            //  Console.WriteLine("\n\nCross validation accuracy: " + crossValidationAccuracy);
            Console.WriteLine("\nTest accuracy: " + testAccuracy);
            Console.WriteLine("\nConfusion matrix:\n");

            // Print formatted confusion matrix
            Console.Write(String.Format("{0,6}", ""));
            for (int i = 0; i < model.Labels.Length; i++)
            {
                Console.Write(String.Format("{0,5}", "(" + model.Labels[i] + ")"));
            }
            Console.WriteLine();
            for (int i = 0; i < confusionMatrix.GetLength(0); i++)
            {
                Console.Write(String.Format("{0,5}", "(" + model.Labels[i] + ")"));
                for (int j = 0; j < confusionMatrix.GetLength(1); j++)
                {
                    Console.Write(String.Format("{0,5}", confusionMatrix[i, j]));
                }
                Console.WriteLine();
            }

            Console.WriteLine("\n\nPress any key to quit...");
            Console.ReadLine();
        }
コード例 #12
0
ファイル: Program.cs プロジェクト: src8655/sku
        static void Main(string[] args)
        {
            SVMProblem testSet = SVMProblemHelper.Load(@"Dataset\wine.txt"); // Same as the training set
            SVMModel   model   = SVM.LoadModel(@"Model\wine_model.txt");

            Console.WriteLine("Feature count in one instance: " + model.SV[0].Length + "\n\n");

            // Test 1: Predict instances with SVMProblem's Predict extension method.

            sw.Start();

            double[] target = testSet.Predict(model);

            sw.Stop();
            double elapsedTimeInTest1 = (double)sw.ElapsedMilliseconds / (double)testSet.Length;

            Console.WriteLine("> Test 1: \nPredict instances with SVMProblem's Predict extension method.\n");
            Console.WriteLine("\tAverage elapsed time of one prediction: " + elapsedTimeInTest1 + " ms\n");

            // Test 2: Predict instances with RapidPreditor class which is an explicit implementation of the method used in Test 1.

            using (RapidPredictor predictor = new RapidPredictor(model)) // It needs to be Disposed
            {
                sw.Start();

                target = new double[testSet.Length];
                for (int i = 0; i < testSet.Length; i++)
                {
                    target[i] = predictor.Predict(testSet.X[i]);
                }

                sw.Stop();
            }
            double elapsedTimeInTest2 = (double)sw.ElapsedMilliseconds / (double)testSet.Length;

            Console.WriteLine("> Test 2: \nPredict instances with RapidPreditor class which is an explicit implementation of the method used in Test 1.\n");
            Console.WriteLine("\tAverage elapsed time of one prediction: " + elapsedTimeInTest2 + " ms\n");

            // Test 3: Predict instances with standard SVM.Predict method or SVMNode[]'s predict extension method.

            sw.Start();

            target = new double[testSet.Length];
            for (int i = 0; i < testSet.Length; i++)
            {
                target[i] = SVM.Predict(model, testSet.X[i]);
            }

            sw.Stop();
            double elapsedTimeInTest3 = (double)sw.ElapsedMilliseconds / (double)testSet.Length;

            Console.WriteLine("> Test 3: \nPredict instances with standard SVM.Predict method or SVMNode[]'s Predict extension method.\n");
            Console.WriteLine("\tAverage elapsed time of one prediction: " + elapsedTimeInTest3 + " ms\n");

            // Print the results
            Console.WriteLine("\nExplanation:\n");
            Console.WriteLine(
                "In standard SVM.Predict method, the SVMModel object is allocated and deallocated every time when the method called. " +
                "Also the SVMNode[]'s Predict extension methods directly calls the SVM.Predict. " +
                "However, the model is allocated once and is used to predict whole instances with its pointer in SVMProblem's " +
                "Predict extension method as implemented in the RapidPredictor class. You can take or modify this class in order " +
                "to use in your applications, if you have performance considerations. " +
                "I am not suggesting that SVMProblem's Predict extension method is used in real-time, because the model is allocated" +
                "in every method call.");

            Console.WriteLine("\n\nPress any key to quit...");
            Console.ReadLine();
        }
コード例 #13
0
 public void loadModel(string key)
 {
     svmModel = SVM.LoadModel(modelPathMap[key]);
 }
コード例 #14
0
        private async Task PerformAnalysis(String path, Rectangle rectangle)
        {
            UShortArrayAsImage image = null;

            double[] pcaComponents = null;
            int      tasksComplete = 0;

            UpdateStatus(path, startingImageStatusStr);
            List <Task> tasks = new List <Task>()
            {
                new Task(() =>
                {
                    var file = db.FileStorage.FindById($"images/{path}");
                    var ms   = new MemoryStream();
                    file.CopyTo(ms);
                    ms.Seek(0, 0);
                    image = DicomFile.Open(ms).GetUshortImageInfo();

                    UpdateStatus(path, loadedImageStatusStr);
                }),
                new Task(() =>
                {
                    image = Normalization.GetNormalizedImage(image, rectangle,
                                                             int.Parse(Configuration.Get("sizeImageToAnalyze")));
                    db.FileStorage.Upload($"images/{path}-cropped", $"{path}-cropped",
                                          image.GetPngAsMemoryStream());

                    UpdateStatus(path, croppedImageStatusStr);
                }),
                new Task(() =>
                {
                    image = Contrast.ApplyHistogramEqualization(image);

                    db.FileStorage.Upload($"images/{path}-croppedContrast", $"{path}-croppedContrast",
                                          image.GetPngAsMemoryStream());

                    UpdateStatus(path, contrastImageStatusStr);
                }),
                new Task(() =>
                {
                    //PCA
                    PCA pca = PCA.LoadModelFromFile(Configuration.Get("PcaModelLocation"));

                    if (!int.TryParse(Configuration.Get("componentsToUse"), out int components))
                    {
                        components = pca.Eigenvalues.Length;
                    }
                    pcaComponents = pca.GetComponentsFromImage(image, components);
                    UpdateStatus(path, pcaImageStatusStr);
                }),
                new Task(() =>
                {
                    //SVM
                    SVMProblem svmProblem = new SVMProblem();

                    // add all the components to an SVMNode[]
                    SVMNode[] nodes = new SVMNode[pcaComponents.Length];
                    for (int i = 0; i < pcaComponents.Length; i++)
                    {
                        nodes[i] = new SVMNode(i + 1, pcaComponents[i]);
                    }

                    svmProblem.Add(nodes, 0);

                    svmProblem = svmProblem.Normalize(SVMNormType.L2);

                    SVMModel svmModel = SVM.LoadModel(Configuration.Get("ModelLocation"));

                    double[] results = svmProblem.PredictProbability(svmModel, out var probabilities);

                    var analysis              = db.GetCollection <Analysis>("analysis");
                    Analysis currentAnalysis  = analysis.FindOne(x => x.Id.ToString().Equals(path));
                    currentAnalysis.Certainty = results[0] == 0 ? probabilities[0][1] * 100 : probabilities[0][0] * 100;
                    currentAnalysis.Diagnosis = results[0] == 0
                        ? DdsmImage.Pathologies.Benign
                        : DdsmImage.Pathologies
                                                .Malignant;
                    analysis.Update(currentAnalysis);


                    UpdateStatus(path, svmImageStatusStr);
                })
            };

            foreach (Task task in tasks)
            {
                task.Start();
                await task;

                // lets set percentage done:
                var      analysis        = db.GetCollection <Analysis>("analysis");
                Analysis currentAnalysis = analysis.FindOne(x => x.Id.ToString().Equals(path));
                currentAnalysis.PercentageDone = (++tasksComplete * 100) / tasks.Count;
                analysis.Update(currentAnalysis);
            }

            UpdateStatus(path, doneStatusStr);
        }
コード例 #15
0
ファイル: TestSVM.cs プロジェクト: src8655/sku
 public void SVM_LoadModel_FilenameDoesNotExist_ReturnsNull()
 {
     SVM.LoadModel(Contants.WRONG_MODEL_PATH_TO_BE_LOADED);
 }
コード例 #16
0
ファイル: TestSVM.cs プロジェクト: src8655/sku
 public void SVM_LoadModel_FilenameIsInvalid_ReturnsNull()
 {
     SVM.LoadModel("");
 }