コード例 #1
0
ファイル: nntest.cs プロジェクト: kalineh/think
    public float Evaluate(List <float[]> data, SVM svm)
    {
        var correct = 0;

        for (int i = 0; i < data.Count; ++i)
        {
            var x     = new Unit(data[i][0], 0.0f);
            var y     = new Unit(data[i][1], 0.0f);
            var label = data[i][2];

            var predictedValue = svm.Forward(x, y).value;
            var predictedLabel = predictedValue > 0.0f ? 1.0f : -1.0f;

            if (predictedLabel == label)
            {
                correct++;
            }
        }

        return(correct / (float)data.Count);
    }
コード例 #2
0
ファイル: Program.cs プロジェクト: snarb/NNlib
        private static double EvalTrainingAccuracy(List <double[]> data, List <int> labels, SVM svm)
        {
            var num_correct = 0;

            for (var i = 0; i < data.Count; i++)
            {
                var x          = new Unit(data[i][0], 0.0);
                var y          = new Unit(data[i][1], 0.0);
                var true_label = labels[i];

                // see if the prediction matches the provided label
                var predicted_label = svm.Forward(x, y).Value > 0 ? 1 : -1;
                if (predicted_label == true_label)
                {
                    num_correct++;
                }
            }
            double acc = (double)num_correct / data.Count;

            return(acc);
        }