private static bool IsCommentChar(SnapshotPoint prevPoint, PythonClassifier classifier) { IList<ClassificationSpan> spans; spans = classifier.GetClassificationSpans(new SnapshotSpan(prevPoint, 1)); if (spans.Count == 1 && spans[0].ClassificationType.IsOfType(PredefinedClassificationTypeNames.Comment)) { return true; } return false; }
internal static IEnumerator <ClassificationSpan> ForwardClassificationSpanEnumerator(PythonClassifier classifier, SnapshotPoint startPoint) { var startLine = startPoint.GetContainingLine(); int curLine = startLine.LineNumber; if (startPoint > startLine.End) { // May occur if startPoint is between \r and \n startPoint = startLine.End; } var tokens = classifier.GetClassificationSpans(new SnapshotSpan(startPoint, startLine.End)); for (; ;) { for (int i = 0; i < tokens.Count; ++i) { yield return(tokens[i]); } // indicate the line break yield return(null); ++curLine; if (curLine < startPoint.Snapshot.LineCount) { var nextLine = startPoint.Snapshot.GetLineFromLineNumber(curLine); tokens = classifier.GetClassificationSpans(nextLine.Extent); } else { break; } } }
internal static IEnumerator <ClassificationSpan> ReverseClassificationSpanEnumerator(PythonClassifier classifier, SnapshotPoint startPoint) { var startLine = startPoint.GetContainingLine(); int curLine = startLine.LineNumber; var tokens = classifier.GetClassificationSpans(new SnapshotSpan(startLine.Start, startPoint)); for (; ;) { for (int i = tokens.Count - 1; i >= 0; i--) { yield return(tokens[i]); } // indicate the line break yield return(null); curLine--; if (curLine >= 0) { var prevLine = startPoint.Snapshot.GetLineFromLineNumber(curLine); tokens = classifier.GetClassificationSpans(prevLine.Extent); } else { break; } } }
} = src_path.Substring(0, (src_path.Length) - 4); // USE THIS IF RUNNING FROM VISUAL STUDIO! //public static string src_dir { get; } = Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location); // USE THIS IF RUNNING FROM EXE! static void Main(string[] args) { var setting = JsonHandler.DeserializeSettingsFromFile(src_dir + "/Data/settings.json"); //var setting = new Setting(threaded: true); string method = null; string filename = null; Parser.Default.ParseArguments <Options>(args) .WithParsed <Options>(o => { switch (o.Classifier) { case "svm": Console.WriteLine("Support Vector Machine on: " + o.InputFile); method = o.Classifier; break; case "rb": Console.WriteLine("Rule Based Classifier on: " + o.InputFile); method = o.Classifier; break; case "rf": Console.WriteLine("Random Forest on: " + o.InputFile); method = o.Classifier; break; case "lstm": Console.WriteLine("LSTM on: " + o.InputFile); method = o.Classifier; break; case "random": Console.WriteLine("Random Values on : " + o.InputFile); method = o.Classifier; break; case "bl": Console.WriteLine("Baseline Classifier on: " + o.InputFile); method = o.Classifier; break; case "mml": Console.WriteLine("Microsoft ML on: " + o.InputFile); method = o.Classifier; break; case "data": Console.WriteLine("Creating DataSet"); method = o.Classifier; break; default: Console.WriteLine("Please provide a valid classifier"); System.Environment.Exit(1); break; } filename = o.InputFile; }); var watch = Stopwatch.StartNew(); var tokenizer = new Tokenizer(setting); //var filename = "/Data/all_data.csv"; int serverProcessId = -1; var testData = src_dir + "/Classifiers/TrainingData/test_data.csv"; List <Result> threadedResult = new List <Result>(); List <Result> comparissons = new List <Result>(); Interfaces.IEvaluator evalr = new BaselineClassifer(); switch (method) { case "prediction": case "nb": case "svr": case "svm": case "lstm": case "rf": Console.WriteLine("Runnning clasifier: " + method); setting.threaded = false; //program cannot run threaded if connected to server (yet) serverProcessId = InitServer(method); // runs the PythonServer with argument parsed evalr = new PythonClassifier(Connect()); break; case "rb": Console.WriteLine("Runnning clasifier: " + method); var lex = CSVReader.ReadLexicon(src_dir + "\\Data\\AgreedLexicon.csv"); // lex should be created like this first and then parsed into a pipe, so that we can evaluate on the fly (like we're tokenizing) var tlex = CSVReader.ReadTriggerLex(src_dir + "\\Data\\triggerwords.csv"); evalr = new RuleBasedClassifier(lex, setting, tlex); break; case "random": evalr = new RandomClassifier(); break; case "bl": evalr = new BaselineClassifer(); break; case "mml": evalr = new SentimentClassifier(); break; case "data": var list = new List <(string, string)>(); foreach (var s in CSVReader.ReadComparrisonsYield(src_dir + "\\" + filename)) { list.Add(s); } double count = list.Count * 0.1; FileWriter.CreateRandomTrainingTest(list, (int)count, (int)(list.Count - count)); FileWriter.flushPrinter(setting); Environment.Exit(0); break; } if (setting.compare) { Console.WriteLine("Comparing..."); comparissons = ConvertTestData(CSVReader.ReadComparrisonsYield, evalr, src_dir + filename).ToList(); var results = Pipe_AccuracyTest(comparissons, evalr).ToList(); var formatted = from result in results select result.ToString(); addToOutput(formatted); Console.WriteLine(Environment.NewLine + Analyzer.MatrixWithNeutralToString(Analyzer.GetConfusion(results))); Console.WriteLine(Analyzer.GetAccuracy(results) + "% Accuracy"); } else { Console.WriteLine("Predicting..."); //Procedual evaluation if (!setting.threaded) { var results = ProcedualSentenceLevelPipe(CSVReader.ReadCommentsYield, filename, evalr).ToList(); var formatted = from result in results select result.Value.ToString(); addToOutput(formatted); } //threaded evaluation if (setting.threaded) { var result = ThreadedSentenceLevelPipe(CSVReader.ReadCommentsYield, filename, evalr).ToList(); var formatted = from val in result select val.Value.ToString(); addToOutput(formatted); } } FileWriter.flushPrinter(setting); watch.Stop(); var elapsed = watch.ElapsedMilliseconds; Console.WriteLine("Completed in: " + elapsed + "Ms with " + method); Console.WriteLine("Go to PATH/out/your_time_stamp for the output"); if (serverProcessId != -1) { try { Process.GetProcessById(serverProcessId).Kill(); } catch (SocketException) { // succesfully closed } } Console.ReadKey(); Environment.Exit(0); }