コード例 #1
0
 public bool Save(Stream streamIn)
 {
     try
     {
         Model.Save(streamIn);
     } catch (Exception)
     {
         return(false);
     }
     return(true);
 }
コード例 #2
0
        public void TestModelSaveAndLoad()
        {
            TestTrainValidData();
            string modelFileName = "NaiveBayesFile.txt";

            NaiveBayesModel.Save(new StreamWriter(modelFileName).BaseStream);
            var nbTestModel = new NaiveBayes();

            nbTestModel.Load(new StreamReader(modelFileName).BaseStream);
            Assert.AreEqual(nbTestModel, NaiveBayesModel);
            File.Delete(modelFileName);
        }
コード例 #3
0
        /// <summary>
        /// Classify our data using naive bias classifer and save the model.
        /// </summary>
        /// <param name="train_data">Frame objects that we will use to train classifers.</param>
        /// <param name="test_data">Frame objects that we will use to test classifers.</param>
        /// <param name="train_label">Labels of the train data.</param>
        /// <param name="test_label">Labels of the test data.</param>
        /// <param name="Classifier_Path">Path where we want to save the classifer on the disk.</param>
        /// <param name="Classifier_Name">Name of the classifer we wnat to save.</param>
        /// <returns></returns>
        public void Naive_Bias(double[][] train_data, double[][] test_data, int[] train_label, int[] test_label, String Classifier_Path, String Classifier_Name)
        {
            Accord.Math.Random.Generator.Seed = 0;

            int[][] tr_da = new int[train_data.Length][];

            for (int i = 0; i < train_data.Length; i++)
            {
                int[] temp = new int[2];
                temp[0] = (int)train_data[i][0];
                temp[1] = (int)train_data[i][1];

                tr_da[i] = temp;
            }

            int[][] te_da = new int[test_data.Length][];

            for (int i = 0; i < test_data.Length; i++)
            {
                int[] temp = new int[2];
                temp[0] = (int)test_data[i][0];
                temp[1] = (int)test_data[i][1];

                te_da[i] = temp;
            }


            // Let us create a learning algorithm
            var learner = new NaiveBayesLearning();

            // and teach a model on the data examples
            NaiveBayes nb = learner.Learn(tr_da, train_label);

            // Now, let's test  the model output for the first input sample:
            //int answer = nb.Decide(new int[] {20,10000}); // should be 1
            double[] scores = nb.Probability(te_da);


            nb.Save(Path.Combine(Classifier_Path, Classifier_Name));
        }
コード例 #4
0
ファイル: Program.cs プロジェクト: msbobh/NBayes
        static void Main(string[] args)
        {
            /*
             * Takes a csv files as input and trains a naive bayes classfier, if the test flag is set the rountine
             * will calculate the accuracy of the input files using the previous saved model in the exeution directioy
             * If the test flag is set a new classifier is not trainied
             * but the previous model is loaded and used agains the test data.
             *
             * arg 1 = training file or test file
             * arg 2 = label file
             * arg 3 = test flag (-s or -S)
             * arg 4 = Specify file name of model file
             */

            const int minargs = 2;
            const int maxargs = 4;
            const int Folds   = 4;

            Accord.Math.Random.Generator.Seed = 0;
            string trainingFname = null;
            string labelFname    = null;
            string modelFname    = "NBmodel.sav"; // Default model file name
            bool   NoTrain       = false;

            Functions.Welcome();
            int numArgs = Functions.parseCommandLine(args, maxargs, minargs);

            if (numArgs == 0)
            {
                Console.WriteLine(Strings.resources.usage);
                System.Environment.Exit(1);
            }

            if (numArgs == 2)
            {
                trainingFname = args[0];
                labelFname    = args[1];
            }
            if (numArgs == 3) // no use for third parameter yet!
            {
                if (args[2] == ("-s") | args[2] == ("-S"))
                {
                    NoTrain       = true;
                    trainingFname = args[0];
                    labelFname    = args[1];
                }
                else
                {
                    Console.WriteLine(Strings.resources.usage);
                    System.Environment.Exit(1);
                }
            }

            if (numArgs == 4)
            {
                NoTrain       = true;
                trainingFname = args[0];
                labelFname    = args[1];
                modelFname    = args[3];
            }
            //
            // Check if the training and label files exist and are not locked by anohter process
            //

            if (!Utility.Functions.checkFile(trainingFname))
            {
                Console.WriteLine("Error opening file{0}", trainingFname);
                System.Environment.Exit(1);
            }
            if (!Functions.checkFile(labelFname))
            {
                Console.WriteLine("Error opening file {0}", labelFname);
                System.Environment.Exit(1);
            }

            //
            // Read in the training and label files, CSV format
            //
            CsvReader training_samples = new CsvReader(trainingFname, false);

            int[,] MatrixIn = training_samples.ToMatrix <int>();
            int[][] trainingset = Functions.convertToJaggedArray(MatrixIn);

            //
            // Naive Bayes gets trained on integer arrays or arrays of "strings"
            //
            CsvReader label_samples = new CsvReader(labelFname, false);

            int[,] labelsIn = label_samples.ToMatrix <int>(); // COnvert the labels to a matrix and then to jagged array
            int[][] LabelSet = Functions.convertToJaggedArray(labelsIn);
            int[]   output   = Functions.convertTointArray(LabelSet);

            NaiveBayes loaded_nb;   // setup for loading a trained model if one exists

            if (!NoTrain)
            {
                // Create a new Naive Bayes learning instance
                var learner = new NaiveBayesLearning();

                // Create a Naive Bayes classifier and train with the input datasets
                NaiveBayes classifier = learner.Learn(trainingset, output);

                /* Cross-validation is a technique for estimating the performance of a predictive model.
                 * It can be used to measure how the results of a statistical analysis will generalize to
                 * an independent data set. It is mainly used in settings where the goal is prediction, and
                 * one wants to estimate how accurately a predictive model will perform in practice.
                 *
                 * One round of cross-validation involves partitioning a sample of data into complementary
                 * subsets, performing the analysis on one subset (called the training set), and validating
                 * the analysis on the other subset (called the validation set or testing set). To reduce
                 * variability, multiple rounds of cross-validation are performed using different partitions,
                 * and the validation results are averaged over the rounds
                 */

                // Gets results based on performing a k-fold cross validation based on the input training set
                // Create a cross validation instance


                var cv = CrossValidation.Create(k: Folds, learner: (p) => new NaiveBayesLearning(),
                                                loss: (actual, expected, p) => new ZeroOneLoss(expected).Loss(actual),
                                                fit: (teacher, x, y, w) => teacher.Learn(x, y, w),
                                                x: trainingset, y: output);

                var result = cv.Learn(trainingset, output);

                Console.WriteLine("Performing n-fold cross validation where n = {0}", cv.K);

                // We can grab some information about the problem:
                Console.WriteLine("Cross Validation Results");
                Console.WriteLine("     number of samples {0}", result.NumberOfSamples);
                Console.WriteLine("     number of features: {0}", result.NumberOfInputs);
                Console.WriteLine("     number of outputs {0}", result.NumberOfOutputs);
                Console.WriteLine("     Training Error: {0:n2}", result.Training.Mean); // should be 0 or no
                Console.WriteLine("     Validation Mean: {0}\n", result.Validation.Mean);

                Console.WriteLine("Creating General Confusion Matrix from Cross Validation");
                GeneralConfusionMatrix gcm = result.ToConfusionMatrix(trainingset, output);
                double accuracy            = gcm.Accuracy; // should be 0.625
                Console.WriteLine(" GCM Accuracy {0}%\n", accuracy * 100);


                ConfusionMatrix cm = ConfusionMatrix.Estimate(classifier, trainingset, output);
                Console.WriteLine("Confusion Error {0}", cm.Error);
                Console.WriteLine("Confusion accuracy {0}", cm.Accuracy);
                double tp     = cm.TruePositives;
                double tn     = cm.TrueNegatives;
                double fscore = cm.FScore;
                double fp     = cm.FalsePositives;
                double fn     = cm.FalseNegatives;
                Console.WriteLine("TP = {0},TN = {1}, FP = {2}, FN = {3}, Fscore = {4} ", tp, tn, fp, fn, fscore);


                // Save the model created from the training set

                classifier.Save("NBmodel.sav", compression: SerializerCompression.None);
                Console.WriteLine("Successfully saved the model");
            }
            else
            {
                // load a previous model
                loaded_nb = Serializer.Load <NaiveBayes>(modelFname);                               // Load the model
                int[]  results  = loaded_nb.Decide(trainingset);                                    // Make preditions from the input
                double accuracy = Functions.CalculateAccuraccy(output, results);
                Console.WriteLine("Accuracy of predictions = {0}%", Math.Round(accuracy * 100, 2)); // Compare the predicions to the labels
            }
        }