public void TestPredictMethod() { TestTrainValidData(); object predicted = NaiveBayesModel.Predict(new List <object> { "Sunny" }); string predictedRes = predicted as string; Assert.AreEqual(predictedRes, "Yes"); }
public void Deveria_prever_com_cem_porcento_de_probabildade_quando_dado_fornecido_for_igual_ao_dado_treinado() { var play = new PlayBasketball { HasBall = true, NumberOfPlayers = 4, Rain = false, Windy = false, CanPlay = true }; _naiveBayes.Add(play); _naiveBayes.Fit(); decimal probability = _naiveBayes.Predict(play); probability.Should().Be(1); }
public List <string> PredictKeywords(List <List <string> > sentencePosTokensIn) { List <string> retKeywords = new List <string>(); var examples = SplitInputIntoExamples(sentencePosTokensIn); int currIndex = 1; //the element directly after the START token foreach (List <string> example in examples) { List <object> objExample = new List <object>(); foreach (string x in example) { objExample.Add(x); } object res = Model.Predict(objExample); if ((bool)res) { retKeywords.Add(sentencePosTokensIn[currIndex][0]); } currIndex++; } return(retKeywords); }