/// <summary> /// Crosses the matcher. /// </summary> /// <returns>The matcher.</returns> /// <param name="queryDescriptors">Query descriptors.</param> /// <param name="trainDescriptors">Train descriptors.</param> public static IList <DMatch> CrossMatcher(MatOfFloat queryDescriptors, MatOfFloat trainDescriptors) { MatOfDMatch matchQT = new MatOfDMatch(), matchTQ = new MatOfDMatch(); List <DMatch> bmatch = new List <DMatch>(); DMatch[] dmatch; if (trainDescriptors.cols() <= 0) { throw new ApplicationException("CrossMatcherの引数trainDescriptorsがありません。"); } matcher.match(queryDescriptors, trainDescriptors, matchQT); if (queryDescriptors.cols() <= 0) { throw new ApplicationException("CrossMatcherの引数queryDescriptorsがありません。"); } matcher.match(trainDescriptors, queryDescriptors, matchTQ); for (int i = 0; i < matchQT.rows(); i++) { DMatch forward = matchQT.toList()[i]; DMatch backward = matchTQ.toList()[forward.trainIdx]; if (backward.trainIdx == forward.queryIdx) { bmatch.Add(forward); } } dmatch = bmatch.ToArray(); bmatch.Clear(); return(dmatch); }
public bool descriptorsORB_Old(Mat RGB, Mat cameraFeed, string targetName)//找出特徵的顏色方法三(可運行但效率不佳放棄) { if (RGB == null) { Debug.Log("RGB Mat is Null"); return(false); } //將傳入的RGB存入Src Mat SrcMat = new Mat(); RGB.copyTo(SrcMat); //比對樣本 Texture2D imgTexture = Resources.Load(targetName) as Texture2D; // Texture2D imgTexture2 = Resources.Load("lenaK") as Texture2D; //Texture2D轉Mat Mat img1Mat = new Mat(imgTexture.height, imgTexture.width, CvType.CV_8UC3); Utils.texture2DToMat(imgTexture, img1Mat); //創建 ORB的特徵點裝置 FeatureDetector detector = FeatureDetector.create(FeatureDetector.ORB); DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.ORB); //產生存放特徵點Mat MatOfKeyPoint keypoints1 = new MatOfKeyPoint(); Mat descriptors1 = new Mat(); MatOfKeyPoint keypointsSrc = new MatOfKeyPoint(); Mat descriptorsSrc = new Mat(); //找特徵點圖1 detector.detect(img1Mat, keypoints1); extractor.compute(img1Mat, keypoints1, descriptors1); //找特徵點圖Src detector.detect(SrcMat, keypointsSrc); extractor.compute(SrcMat, keypointsSrc, descriptorsSrc); DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMINGLUT); MatOfDMatch matches = new MatOfDMatch(); matcher.match(descriptors1, descriptorsSrc, matches); DMatch[] arrayDmatch = matches.toArray(); for (int i = arrayDmatch.Length - 1; i >= 0; i--) { // Debug.Log("match " + i + ": " + arrayDmatch[i].distance); } //做篩選 double max_dist = 0; double min_dist = 100; //-- Quick calculation of max and min distances between keypoints double dist = new double(); for (int i = 0; i < matches.rows(); i++) { dist = arrayDmatch[i].distance; if (dist < min_dist) { min_dist = dist; } if (dist > max_dist) { max_dist = dist; } } Debug.Log("Max dist :" + max_dist); Debug.Log("Min dist :" + min_dist); //只畫好的點 List <DMatch> matchesGoodList = new List <DMatch>(); for (int i = 0; i < matches.rows(); i++) { //if (arrayDmatch[i].distance < RateDist.value * min_dist) //{ // //Debug.Log("match " + i + ": " + arrayDmatch[i].distance); // matchesGoodList.Add(arrayDmatch[i]); //} } MatOfDMatch matchesGood = new MatOfDMatch(); matchesGood.fromList(matchesGoodList); //Draw Keypoints Features2d.drawKeypoints(SrcMat, keypointsSrc, SrcMat); //做輸出的轉換予宣告 Mat resultImg = new Mat(); // Features2d.drawMatches(img1Mat, keypoints1, SrcMat, keypointsSrc, matchesGood, resultImg); List <Point> P1 = new List <Point>(); // List<Point> P2 = new List<Point>(); List <Point> pSrc = new List <Point>(); Debug.Log("MatchCount" + matchesGoodList.Count); for (int i = 0; i < matchesGoodList.Count; i++) { P1.Add(new Point(keypoints1.toArray()[matchesGoodList[i].queryIdx].pt.x, keypoints1.toArray()[matchesGoodList[i].queryIdx].pt.y)); pSrc.Add(new Point(keypointsSrc.toArray()[matchesGoodList[i].trainIdx].pt.x, keypointsSrc.toArray()[matchesGoodList[i].trainIdx].pt.y)); //Debug.Log("ID = " + matchesGoodList[i].queryIdx ); //Debug.Log("x,y =" + (int)keypoints1.toArray()[matchesGoodList[i].queryIdx].pt.x + "," + (int)keypoints1.toArray()[matchesGoodList[i].queryIdx].pt.y); //Debug.Log("x,y =" + (int)keypoints2.toArray()[matchesGoodList[i].trainIdx].pt.x + "," + (int)keypoints2.toArray()[matchesGoodList[i].trainIdx].pt.y); } MatOfPoint2f p2fTarget = new MatOfPoint2f(P1.ToArray()); MatOfPoint2f p2fSrc = new MatOfPoint2f(pSrc.ToArray()); Mat matrixH = Calib3d.findHomography(p2fTarget, p2fSrc, Calib3d.RANSAC, 3); List <Point> srcPointCorners = new List <Point>(); srcPointCorners.Add(new Point(0, 0)); srcPointCorners.Add(new Point(img1Mat.width(), 0)); srcPointCorners.Add(new Point(img1Mat.width(), img1Mat.height())); srcPointCorners.Add(new Point(0, img1Mat.height())); Mat originalRect = Converters.vector_Point2f_to_Mat(srcPointCorners); List <Point> srcPointCornersEnd = new List <Point>(); srcPointCornersEnd.Add(new Point(0, img1Mat.height())); srcPointCornersEnd.Add(new Point(0, 0)); srcPointCornersEnd.Add(new Point(img1Mat.width(), 0)); srcPointCornersEnd.Add(new Point(img1Mat.width(), img1Mat.height())); Mat changeRect = Converters.vector_Point2f_to_Mat(srcPointCornersEnd); Core.perspectiveTransform(originalRect, changeRect, matrixH); List <Point> srcPointCornersSave = new List <Point>(); Converters.Mat_to_vector_Point(changeRect, srcPointCornersSave); if ((srcPointCornersSave[2].x - srcPointCornersSave[0].x) < 5 || (srcPointCornersSave[2].y - srcPointCornersSave[0].y) < 5) { Debug.Log("Match Out Put image is to small"); SrcMat.copyTo(cameraFeed); SrcMat.release(); Imgproc.putText(cameraFeed, "X-S", new Point(10, 50), 0, 1, new Scalar(255, 255, 255), 2); return(false); } // Features2d.drawMatches(img1Mat, keypoints1, SrcMat, keypointsSrc, matchesGood, resultImg); Imgproc.line(SrcMat, srcPointCornersSave[0], srcPointCornersSave[1], new Scalar(255, 0, 0), 3); Imgproc.line(SrcMat, srcPointCornersSave[1], srcPointCornersSave[2], new Scalar(255, 0, 0), 3); Imgproc.line(SrcMat, srcPointCornersSave[2], srcPointCornersSave[3], new Scalar(255, 0, 0), 3); Imgproc.line(SrcMat, srcPointCornersSave[3], srcPointCornersSave[0], new Scalar(255, 0, 0), 3); SrcMat.copyTo(cameraFeed); keypoints1.release(); img1Mat.release(); SrcMat.release(); return(true); }
//============================================================ //=================以下為沒有再使用的函式===================== //============================================================ //找出特徵的顏色方法三(ORB特徵點比對) public bool descriptorsORB(Mat RGB, Mat cameraFeed, string targetName) { if (RGB == null) { Debug.Log("RGB Mat is Null"); return(false); } //將傳入的RGB存入Src Mat SrcMat = new Mat(); RGB.copyTo(SrcMat); //比對樣本載入 Texture2D imgTexture = Resources.Load(targetName) as Texture2D; //Texture2D轉Mat Mat targetMat = new Mat(imgTexture.height, imgTexture.width, CvType.CV_8UC3); Utils.texture2DToMat(imgTexture, targetMat); //創建 ORB的特徵點裝置 FeatureDetector detector = FeatureDetector.create(FeatureDetector.ORB); DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.ORB); //產生存放特徵點Mat MatOfKeyPoint keypointsTarget = new MatOfKeyPoint(); Mat descriptorsTarget = new Mat(); MatOfKeyPoint keypointsSrc = new MatOfKeyPoint(); Mat descriptorsSrc = new Mat(); //找特徵點圖Target detector.detect(targetMat, keypointsTarget); extractor.compute(targetMat, keypointsTarget, descriptorsTarget); //找特徵點圖Src detector.detect(SrcMat, keypointsSrc); extractor.compute(SrcMat, keypointsSrc, descriptorsSrc); //創建特徵點比對物件 DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMINGLUT); MatOfDMatch matches = new MatOfDMatch(); //丟入兩影像的特徵點 matcher.match(descriptorsTarget, descriptorsSrc, matches); DMatch[] arrayDmatch = matches.toArray(); //做篩選 double max_dist = 0; double min_dist = 100; //-- Quick calculation of max and min distances between keypoints double dist = new double(); for (int i = 0; i < matches.rows(); i++) { dist = arrayDmatch[i].distance; if (dist < min_dist) { min_dist = dist; } if (dist > max_dist) { max_dist = dist; } } Debug.Log("Max dist :" + max_dist); Debug.Log("Min dist :" + min_dist); List <DMatch> matchesGoodList = new List <DMatch>(); MatOfDMatch matchesGood = new MatOfDMatch(); matchesGood.fromList(matchesGoodList); //Draw Keypoints Features2d.drawKeypoints(SrcMat, keypointsSrc, SrcMat); List <Point> pTarget = new List <Point>(); List <Point> pSrc = new List <Point>(); Debug.Log("MatchCount" + matchesGoodList.Count); for (int i = 0; i < matchesGoodList.Count; i++) { pTarget.Add(new Point(keypointsTarget.toArray()[matchesGoodList[i].queryIdx].pt.x, keypointsTarget.toArray()[matchesGoodList[i].queryIdx].pt.y)); pSrc.Add(new Point(keypointsSrc.toArray()[matchesGoodList[i].trainIdx].pt.x, keypointsSrc.toArray()[matchesGoodList[i].trainIdx].pt.y)); } MatOfPoint2f p2fTarget = new MatOfPoint2f(pTarget.ToArray()); MatOfPoint2f p2fSrc = new MatOfPoint2f(pSrc.ToArray()); Mat matrixH = Calib3d.findHomography(p2fTarget, p2fSrc, Calib3d.RANSAC, 3); List <Point> srcPointCorners = new List <Point>(); srcPointCorners.Add(new Point(0, 0)); srcPointCorners.Add(new Point(targetMat.width(), 0)); srcPointCorners.Add(new Point(targetMat.width(), targetMat.height())); srcPointCorners.Add(new Point(0, targetMat.height())); Mat originalRect = Converters.vector_Point2f_to_Mat(srcPointCorners); List <Point> srcPointCornersEnd = new List <Point>(); srcPointCornersEnd.Add(new Point(0, targetMat.height())); srcPointCornersEnd.Add(new Point(0, 0)); srcPointCornersEnd.Add(new Point(targetMat.width(), 0)); srcPointCornersEnd.Add(new Point(targetMat.width(), targetMat.height())); Mat changeRect = Converters.vector_Point2f_to_Mat(srcPointCornersEnd); Core.perspectiveTransform(originalRect, changeRect, matrixH); List <Point> srcPointCornersSave = new List <Point>(); Converters.Mat_to_vector_Point(changeRect, srcPointCornersSave); if ((srcPointCornersSave[2].x - srcPointCornersSave[0].x) < 5 || (srcPointCornersSave[2].y - srcPointCornersSave[0].y) < 5) { Debug.Log("Match Out Put image is to small"); SrcMat.copyTo(cameraFeed); SrcMat.release(); Imgproc.putText(cameraFeed, targetName, srcPointCornersSave[0], 0, 1, new Scalar(255, 255, 255), 2); return(false); } //畫出框框 Imgproc.line(SrcMat, srcPointCornersSave[0], srcPointCornersSave[1], new Scalar(255, 0, 0), 3); Imgproc.line(SrcMat, srcPointCornersSave[1], srcPointCornersSave[2], new Scalar(255, 0, 0), 3); Imgproc.line(SrcMat, srcPointCornersSave[2], srcPointCornersSave[3], new Scalar(255, 0, 0), 3); Imgproc.line(SrcMat, srcPointCornersSave[3], srcPointCornersSave[0], new Scalar(255, 0, 0), 3); //畫中心 Point middlePoint = new Point((srcPointCornersSave[0].x + srcPointCornersSave[2].x) / 2, (srcPointCornersSave[0].y + srcPointCornersSave[2].y) / 2); Imgproc.line(SrcMat, middlePoint, middlePoint, new Scalar(0, 0, 255), 10); SrcMat.copyTo(cameraFeed); keypointsTarget.release(); targetMat.release(); SrcMat.release(); return(true); }