Beispiel #1
0
        /// <summary>
        /// Crosses the matcher.
        /// </summary>
        /// <returns>The matcher.</returns>
        /// <param name="queryDescriptors">Query descriptors.</param>
        /// <param name="trainDescriptors">Train descriptors.</param>
        public static IList <DMatch> CrossMatcher(MatOfFloat queryDescriptors, MatOfFloat trainDescriptors)
        {
            MatOfDMatch   matchQT = new MatOfDMatch(), matchTQ = new MatOfDMatch();
            List <DMatch> bmatch = new List <DMatch>();

            DMatch[] dmatch;
            if (trainDescriptors.cols() <= 0)
            {
                throw new ApplicationException("CrossMatcherの引数trainDescriptorsがありません。");
            }
            matcher.match(queryDescriptors, trainDescriptors, matchQT);
            if (queryDescriptors.cols() <= 0)
            {
                throw new ApplicationException("CrossMatcherの引数queryDescriptorsがありません。");
            }
            matcher.match(trainDescriptors, queryDescriptors, matchTQ);
            for (int i = 0; i < matchQT.rows(); i++)
            {
                DMatch forward  = matchQT.toList()[i];
                DMatch backward = matchTQ.toList()[forward.trainIdx];
                if (backward.trainIdx == forward.queryIdx)
                {
                    bmatch.Add(forward);
                }
            }
            dmatch = bmatch.ToArray();
            bmatch.Clear();
            return(dmatch);
        }
Beispiel #2
0
    public bool descriptorsORB_Old(Mat RGB, Mat cameraFeed, string targetName)//找出特徵的顏色方法三(可運行但效率不佳放棄)
    {
        if (RGB == null)
        {
            Debug.Log("RGB Mat is Null");
            return(false);
        }
        //將傳入的RGB存入Src
        Mat SrcMat = new Mat();

        RGB.copyTo(SrcMat);
        //比對樣本
        Texture2D imgTexture = Resources.Load(targetName) as Texture2D;
        //  Texture2D imgTexture2 = Resources.Load("lenaK") as Texture2D;

        //Texture2D轉Mat
        Mat img1Mat = new Mat(imgTexture.height, imgTexture.width, CvType.CV_8UC3);

        Utils.texture2DToMat(imgTexture, img1Mat);

        //創建 ORB的特徵點裝置
        FeatureDetector     detector  = FeatureDetector.create(FeatureDetector.ORB);
        DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.ORB);
        //產生存放特徵點Mat
        MatOfKeyPoint keypoints1     = new MatOfKeyPoint();
        Mat           descriptors1   = new Mat();
        MatOfKeyPoint keypointsSrc   = new MatOfKeyPoint();
        Mat           descriptorsSrc = new Mat();

        //找特徵點圖1
        detector.detect(img1Mat, keypoints1);
        extractor.compute(img1Mat, keypoints1, descriptors1);
        //找特徵點圖Src
        detector.detect(SrcMat, keypointsSrc);
        extractor.compute(SrcMat, keypointsSrc, descriptorsSrc);

        DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMINGLUT);
        MatOfDMatch       matches = new MatOfDMatch();

        matcher.match(descriptors1, descriptorsSrc, matches);
        DMatch[] arrayDmatch = matches.toArray();

        for (int i = arrayDmatch.Length - 1; i >= 0; i--)
        {
            //   Debug.Log("match " + i + ": " + arrayDmatch[i].distance);
        }
        //做篩選
        double max_dist = 0;
        double min_dist = 100;
        //-- Quick calculation of max and min distances between keypoints
        double dist = new double();

        for (int i = 0; i < matches.rows(); i++)
        {
            dist = arrayDmatch[i].distance;
            if (dist < min_dist)
            {
                min_dist = dist;
            }
            if (dist > max_dist)
            {
                max_dist = dist;
            }
        }
        Debug.Log("Max dist :" + max_dist);
        Debug.Log("Min dist :" + min_dist);
        //只畫好的點

        List <DMatch> matchesGoodList = new List <DMatch>();

        for (int i = 0; i < matches.rows(); i++)
        {
            //if (arrayDmatch[i].distance < RateDist.value * min_dist)
            //{
            //    //Debug.Log("match " + i + ": " + arrayDmatch[i].distance);
            //    matchesGoodList.Add(arrayDmatch[i]);
            //}
        }
        MatOfDMatch matchesGood = new MatOfDMatch();

        matchesGood.fromList(matchesGoodList);

        //Draw Keypoints
        Features2d.drawKeypoints(SrcMat, keypointsSrc, SrcMat);

        //做輸出的轉換予宣告

        Mat resultImg = new Mat();
        // Features2d.drawMatches(img1Mat, keypoints1, SrcMat, keypointsSrc, matchesGood, resultImg);

        List <Point> P1 = new List <Point>();
        // List<Point> P2 = new List<Point>();
        List <Point> pSrc = new List <Point>();

        Debug.Log("MatchCount" + matchesGoodList.Count);
        for (int i = 0; i < matchesGoodList.Count; i++)
        {
            P1.Add(new Point(keypoints1.toArray()[matchesGoodList[i].queryIdx].pt.x, keypoints1.toArray()[matchesGoodList[i].queryIdx].pt.y));
            pSrc.Add(new Point(keypointsSrc.toArray()[matchesGoodList[i].trainIdx].pt.x, keypointsSrc.toArray()[matchesGoodList[i].trainIdx].pt.y));
            //Debug.Log("ID = " + matchesGoodList[i].queryIdx );
            //Debug.Log("x,y =" + (int)keypoints1.toArray()[matchesGoodList[i].queryIdx].pt.x + "," + (int)keypoints1.toArray()[matchesGoodList[i].queryIdx].pt.y);
            //Debug.Log("x,y =" + (int)keypoints2.toArray()[matchesGoodList[i].trainIdx].pt.x + "," + (int)keypoints2.toArray()[matchesGoodList[i].trainIdx].pt.y);
        }

        MatOfPoint2f p2fTarget = new MatOfPoint2f(P1.ToArray());
        MatOfPoint2f p2fSrc    = new MatOfPoint2f(pSrc.ToArray());

        Mat          matrixH         = Calib3d.findHomography(p2fTarget, p2fSrc, Calib3d.RANSAC, 3);
        List <Point> srcPointCorners = new List <Point>();

        srcPointCorners.Add(new Point(0, 0));
        srcPointCorners.Add(new Point(img1Mat.width(), 0));
        srcPointCorners.Add(new Point(img1Mat.width(), img1Mat.height()));
        srcPointCorners.Add(new Point(0, img1Mat.height()));

        Mat          originalRect       = Converters.vector_Point2f_to_Mat(srcPointCorners);
        List <Point> srcPointCornersEnd = new List <Point>();

        srcPointCornersEnd.Add(new Point(0, img1Mat.height()));
        srcPointCornersEnd.Add(new Point(0, 0));
        srcPointCornersEnd.Add(new Point(img1Mat.width(), 0));
        srcPointCornersEnd.Add(new Point(img1Mat.width(), img1Mat.height()));

        Mat changeRect = Converters.vector_Point2f_to_Mat(srcPointCornersEnd);

        Core.perspectiveTransform(originalRect, changeRect, matrixH);
        List <Point> srcPointCornersSave = new List <Point>();

        Converters.Mat_to_vector_Point(changeRect, srcPointCornersSave);

        if ((srcPointCornersSave[2].x - srcPointCornersSave[0].x) < 5 || (srcPointCornersSave[2].y - srcPointCornersSave[0].y) < 5)
        {
            Debug.Log("Match Out Put image is to small");
            SrcMat.copyTo(cameraFeed);
            SrcMat.release();
            Imgproc.putText(cameraFeed, "X-S", new Point(10, 50), 0, 1, new Scalar(255, 255, 255), 2);
            return(false);
        }
        //    Features2d.drawMatches(img1Mat, keypoints1, SrcMat, keypointsSrc, matchesGood, resultImg);
        Imgproc.line(SrcMat, srcPointCornersSave[0], srcPointCornersSave[1], new Scalar(255, 0, 0), 3);
        Imgproc.line(SrcMat, srcPointCornersSave[1], srcPointCornersSave[2], new Scalar(255, 0, 0), 3);
        Imgproc.line(SrcMat, srcPointCornersSave[2], srcPointCornersSave[3], new Scalar(255, 0, 0), 3);
        Imgproc.line(SrcMat, srcPointCornersSave[3], srcPointCornersSave[0], new Scalar(255, 0, 0), 3);

        SrcMat.copyTo(cameraFeed);
        keypoints1.release();
        img1Mat.release();
        SrcMat.release();
        return(true);
    }
Beispiel #3
0
//============================================================
//=================以下為沒有再使用的函式=====================
//============================================================

    //找出特徵的顏色方法三(ORB特徵點比對)
    public bool descriptorsORB(Mat RGB, Mat cameraFeed, string targetName)
    {
        if (RGB == null)
        {
            Debug.Log("RGB Mat is Null");
            return(false);
        }
        //將傳入的RGB存入Src
        Mat SrcMat = new Mat();

        RGB.copyTo(SrcMat);
        //比對樣本載入
        Texture2D imgTexture = Resources.Load(targetName) as Texture2D;

        //Texture2D轉Mat
        Mat targetMat = new Mat(imgTexture.height, imgTexture.width, CvType.CV_8UC3);

        Utils.texture2DToMat(imgTexture, targetMat);

        //創建 ORB的特徵點裝置
        FeatureDetector     detector  = FeatureDetector.create(FeatureDetector.ORB);
        DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.ORB);

        //產生存放特徵點Mat
        MatOfKeyPoint keypointsTarget   = new MatOfKeyPoint();
        Mat           descriptorsTarget = new Mat();
        MatOfKeyPoint keypointsSrc      = new MatOfKeyPoint();
        Mat           descriptorsSrc    = new Mat();

        //找特徵點圖Target
        detector.detect(targetMat, keypointsTarget);
        extractor.compute(targetMat, keypointsTarget, descriptorsTarget);

        //找特徵點圖Src
        detector.detect(SrcMat, keypointsSrc);
        extractor.compute(SrcMat, keypointsSrc, descriptorsSrc);

        //創建特徵點比對物件
        DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMINGLUT);
        MatOfDMatch       matches = new MatOfDMatch();

        //丟入兩影像的特徵點
        matcher.match(descriptorsTarget, descriptorsSrc, matches);
        DMatch[] arrayDmatch = matches.toArray();

        //做篩選
        double max_dist = 0;
        double min_dist = 100;
        //-- Quick calculation of max and min distances between keypoints
        double dist = new double();

        for (int i = 0; i < matches.rows(); i++)
        {
            dist = arrayDmatch[i].distance;
            if (dist < min_dist)
            {
                min_dist = dist;
            }
            if (dist > max_dist)
            {
                max_dist = dist;
            }
        }
        Debug.Log("Max dist :" + max_dist);
        Debug.Log("Min dist :" + min_dist);

        List <DMatch> matchesGoodList = new List <DMatch>();

        MatOfDMatch matchesGood = new MatOfDMatch();

        matchesGood.fromList(matchesGoodList);

        //Draw Keypoints
        Features2d.drawKeypoints(SrcMat, keypointsSrc, SrcMat);

        List <Point> pTarget = new List <Point>();
        List <Point> pSrc    = new List <Point>();

        Debug.Log("MatchCount" + matchesGoodList.Count);
        for (int i = 0; i < matchesGoodList.Count; i++)
        {
            pTarget.Add(new Point(keypointsTarget.toArray()[matchesGoodList[i].queryIdx].pt.x, keypointsTarget.toArray()[matchesGoodList[i].queryIdx].pt.y));
            pSrc.Add(new Point(keypointsSrc.toArray()[matchesGoodList[i].trainIdx].pt.x, keypointsSrc.toArray()[matchesGoodList[i].trainIdx].pt.y));
        }

        MatOfPoint2f p2fTarget = new MatOfPoint2f(pTarget.ToArray());
        MatOfPoint2f p2fSrc    = new MatOfPoint2f(pSrc.ToArray());

        Mat matrixH = Calib3d.findHomography(p2fTarget, p2fSrc, Calib3d.RANSAC, 3);

        List <Point> srcPointCorners = new List <Point>();

        srcPointCorners.Add(new Point(0, 0));
        srcPointCorners.Add(new Point(targetMat.width(), 0));
        srcPointCorners.Add(new Point(targetMat.width(), targetMat.height()));
        srcPointCorners.Add(new Point(0, targetMat.height()));
        Mat originalRect = Converters.vector_Point2f_to_Mat(srcPointCorners);

        List <Point> srcPointCornersEnd = new List <Point>();

        srcPointCornersEnd.Add(new Point(0, targetMat.height()));
        srcPointCornersEnd.Add(new Point(0, 0));
        srcPointCornersEnd.Add(new Point(targetMat.width(), 0));
        srcPointCornersEnd.Add(new Point(targetMat.width(), targetMat.height()));
        Mat changeRect = Converters.vector_Point2f_to_Mat(srcPointCornersEnd);

        Core.perspectiveTransform(originalRect, changeRect, matrixH);
        List <Point> srcPointCornersSave = new List <Point>();

        Converters.Mat_to_vector_Point(changeRect, srcPointCornersSave);

        if ((srcPointCornersSave[2].x - srcPointCornersSave[0].x) < 5 || (srcPointCornersSave[2].y - srcPointCornersSave[0].y) < 5)
        {
            Debug.Log("Match Out Put image is to small");
            SrcMat.copyTo(cameraFeed);
            SrcMat.release();
            Imgproc.putText(cameraFeed, targetName, srcPointCornersSave[0], 0, 1, new Scalar(255, 255, 255), 2);
            return(false);
        }
        //畫出框框
        Imgproc.line(SrcMat, srcPointCornersSave[0], srcPointCornersSave[1], new Scalar(255, 0, 0), 3);
        Imgproc.line(SrcMat, srcPointCornersSave[1], srcPointCornersSave[2], new Scalar(255, 0, 0), 3);
        Imgproc.line(SrcMat, srcPointCornersSave[2], srcPointCornersSave[3], new Scalar(255, 0, 0), 3);
        Imgproc.line(SrcMat, srcPointCornersSave[3], srcPointCornersSave[0], new Scalar(255, 0, 0), 3);
        //畫中心
        Point middlePoint = new Point((srcPointCornersSave[0].x + srcPointCornersSave[2].x) / 2, (srcPointCornersSave[0].y + srcPointCornersSave[2].y) / 2);

        Imgproc.line(SrcMat, middlePoint, middlePoint, new Scalar(0, 0, 255), 10);


        SrcMat.copyTo(cameraFeed);
        keypointsTarget.release();
        targetMat.release();
        SrcMat.release();
        return(true);
    }