public void Execute(Logger.Logger logger) { void logGeneration(int generation, double bestFitness, double averageFitness, double worstFitness) { logger.LogGeneticPeriodicTabu(generation, bestFitness, averageFitness, worstFitness, null); } void logOutro(List <double> bestFitnesses) { logger.LogOutro(bestFitnesses); } void logTabuCycle(int tabuCycle, double bestFitness, double currentFitness) { logger.LogGeneticPeriodicTabu(tabuCycle, bestFitness, null, null, currentFitness); } var populations = new List <List <IIndividual> >(); for (var i = 0; i < Parameters.GeneticParameters.NumAlgorithmIterations; i++) { populations.Add(Genetic.InitializePopulation().Select(indiv => { return(Tabu.Execute(logTabuCycle, logOutro, indiv)[0]); }).ToList()); } Genetic.Execute(logGeneration, logOutro, Parameters.TabuParameters.NumTabuSearches, populations); }
public void Execute(Logger.Logger logger) { void logGeneration(int generation, double bestFitness, double averageFitness, double worstFitness) { logger.LogGeneticThenSaTtp1(generation, bestFitness, averageFitness, worstFitness, null, null); } void logOutro(List <double> bestFitnesses) { logger.LogOutro(bestFitnesses); } var finalPopulations = Genetic.Execute(logGeneration, logOutro); void logAnnealingCycle(int annealingCycle, double globalBestFitness, double bestFitness, double currentFitness) { logger.LogGeneticThenSaTtp1(annealingCycle, globalBestFitness, null, null, bestFitness, currentFitness); } foreach (var population in finalPopulations) { var bestFitness = double.MinValue; IIndividual bestIndiv = null; population.ForEach(indiv => { var fitness = Problem.Fitness(indiv); if (fitness > bestFitness) { bestFitness = fitness; bestIndiv = indiv; } }); if (bestIndiv == null) { continue; } Annealing.Execute(logAnnealingCycle, logOutro, bestIndiv, Parameters.GeneticParameters.NumGenerations); } }