void FixedUpdate() { int bestAction = expert.EvaluateAction(rMemory, threshold, samples); int lastAction = learner.CallAction(bestAction); expert.AddToMemory(CLAB); float predictionError = expert.PredictionError(memory, CLAB, lastAction); //Debug.Log("prediction Error" + predictionError); kga.AddToErrorMemory(predictionError); float meanError = kga.MeanError(eMemory, samples); //Debug.Log("mean Error" + meanError); float metaError = kga.MetaM(eMemory, samples, offset); //Debug.Log("meta Error" + meanError); float reward = kga.Reward(meanError, metaError); Debug.Log("reward" + reward * 10); expert.AddToRewardMemory(CLAB, reward * 10, lastAction); }
void FixedUpdate() { int bestAction = expert.EvaluateAction(rMemory, threshold, samples, availableAcions); sensorReading = ReadSensors(sensors); predictionModel.SensoryActionDataAtT.Add(double.Parse(sensorReading.ToString() + bestAction.ToString())); double prediction = expert.MakePredition(double.Parse(sensorReading.ToString() + bestAction.ToString())); availableAcions[bestAction].DoAction(CLAB); //now at t+1 sensorReading = ReadSensors(sensors); predictionModel.SensoryDataAtTPlus1.Add(sensorReading); int lastAction = bestAction; float predictionError = expert.PredictionError(prediction, sensorReading); //Debug.Log("Prediction Error:" + predictionError); //Debug.Log("prediction Error" + predictionError); kga.AddToErrorMemory(predictionError); float meanError = kga.MeanError(eMemory, samples); //Debug.Log("mean Error" + meanError); float metaError = kga.MetaM(eMemory, samples, MetaMemOffset); //Debug.Log("meta Error" + meanError); float reward = kga.Reward(meanError, metaError); Debug.Log("Reward: " + reward * 10 + " To Action: " + lastAction); expert.AddToRewardMemory(reward * 10, lastAction); CullErrorMemory(eMemory, MaxMemorySamples); CullRewardMemory(rMemory, MaxMemorySamples); CullPredictionMemory(predictionModel.SensoryDataAtTPlus1, MaxMemorySamples); CullPredictionMemory(predictionModel.SensoryActionDataAtT, MaxMemorySamples); UpdateThreshold(); // Debug.Log("New Threshold: " + threshold); }