/// <summary> /// Create and return a NeatEvolutionAlgorithm object ready for running the NEAT algorithm/search. Various sub-parts /// of the algorithm are also constructed and connected up. /// This overload accepts a pre-built genome population and their associated/parent genome factory. /// </summary> public NeatEvolutionAlgorithm <NeatGenome> CreateEvolutionAlgorithm(IGenomeFactory <NeatGenome> genomeFactory, List <NeatGenome> genomeList) { // Create distance metric. Mismatched genes have a fixed distance of 10; for matched genes the distance is their weigth difference. IDistanceMetric distanceMetric = new ManhattanDistanceMetric(1.0, 0.0, 10.0); ISpeciationStrategy <NeatGenome> speciationStrategy = new ParallelKMeansClusteringStrategy <NeatGenome>(distanceMetric, _parallelOptions); // Create complexity regulation strategy. IComplexityRegulationStrategy complexityRegulationStrategy = ExperimentUtils.CreateComplexityRegulationStrategy(_complexityRegulationStr, _complexityThreshold); // Create the evolution algorithm. NeatEvolutionAlgorithm <NeatGenome> ea = new NeatEvolutionAlgorithm <NeatGenome>(_eaParams, speciationStrategy, complexityRegulationStrategy); // Create IBlackBox evaluator. _evaluator = CreateEvaluator(); // Create genome decoder. IGenomeDecoder <NeatGenome, IBlackBox> genomeDecoder = CreateGenomeDecoder(); // Create a genome list evaluator. This packages up the genome decoder with the genome evaluator. IGenomeListEvaluator <NeatGenome> innerEvaluator = new SerialGenomeListEvaluator <NeatGenome, IBlackBox>(genomeDecoder, _evaluator); /*new ParallelGenomeListEvaluator<NeatGenome, IBlackBox>(genomeDecoder, _evaluator, _parallelOptions);*/ // Wrap the list evaluator in a 'selective' evaulator that will only evaluate new genomes. That is, we skip re-evaluating any genomes // that were in the population in previous generations (elite genomes). This is determined by examining each genome's evaluation info object. IGenomeListEvaluator <NeatGenome> selectiveEvaluator = new SelectiveGenomeListEvaluator <NeatGenome>( innerEvaluator, SelectiveGenomeListEvaluator <NeatGenome> .CreatePredicate_OnceOnly()); // Initialize the evolution algorithm. ea.Initialize(selectiveEvaluator, genomeFactory, genomeList); // Finished. Return the evolution algorithm return(ea); }
public OCRClassificationView(IGenomeDecoder<NeatGenome, IBlackBox> genomeDecoder, IClassificationDataset dataset, IViewableEvaluator evaluator) : this() { this.decoder = genomeDecoder; this.dataset = dataset; this.evaluator = evaluator; dataset.LoadFromFile(@"Datasets\semeion.samples.data"); sampleCount = dataset.InputSamples.Count(); }
public OCRClassificationView(IGenomeDecoder <NeatGenome, IBlackBox> genomeDecoder, IClassificationDataset dataset, IViewableEvaluator evaluator) : this() { this.decoder = genomeDecoder; this.dataset = dataset; this.evaluator = evaluator; dataset.LoadFromFile(@"Datasets\semeion.samples.data"); sampleCount = dataset.InputSamples.Count(); }
/// <summary> /// Create and return a NeatEvolutionAlgorithm object ready for running the NEAT algorithm/search. Various sub-parts /// of the algorithm are also constructed and connected up. /// This overload accepts a pre-built genome population and their associated/parent genome factory. /// </summary> public NeatEvolutionAlgorithm<NeatGenome> CreateEvolutionAlgorithm(IGenomeFactory<NeatGenome> genomeFactory, List<NeatGenome> genomeList) { // Create distance metric. Mismatched genes have a fixed distance of 10; for matched genes the distance is their weigth difference. IDistanceMetric distanceMetric = new ManhattanDistanceMetric(1.0, 0.0, 10.0); ISpeciationStrategy<NeatGenome> speciationStrategy = new ParallelKMeansClusteringStrategy<NeatGenome>(distanceMetric, _parallelOptions); // Create complexity regulation strategy. IComplexityRegulationStrategy complexityRegulationStrategy = ExperimentUtils.CreateComplexityRegulationStrategy(_complexityRegulationStr, _complexityThreshold); // Create the evolution algorithm. NeatEvolutionAlgorithm<NeatGenome> ea = new NeatEvolutionAlgorithm<NeatGenome>(_eaParams, speciationStrategy, complexityRegulationStrategy); // Create IBlackBox evaluator. _evaluator = CreateEvaluator(); // Create genome decoder. IGenomeDecoder<NeatGenome, IBlackBox> genomeDecoder = CreateGenomeDecoder(); // Create a genome list evaluator. This packages up the genome decoder with the genome evaluator. IGenomeListEvaluator<NeatGenome> innerEvaluator = new SerialGenomeListEvaluator<NeatGenome, IBlackBox>(genomeDecoder, _evaluator); /*new ParallelGenomeListEvaluator<NeatGenome, IBlackBox>(genomeDecoder, _evaluator, _parallelOptions);*/ // Wrap the list evaluator in a 'selective' evaulator that will only evaluate new genomes. That is, we skip re-evaluating any genomes // that were in the population in previous generations (elite genomes). This is determined by examining each genome's evaluation info object. IGenomeListEvaluator<NeatGenome> selectiveEvaluator = new SelectiveGenomeListEvaluator<NeatGenome>( innerEvaluator, SelectiveGenomeListEvaluator<NeatGenome>.CreatePredicate_OnceOnly()); // Initialize the evolution algorithm. ea.Initialize(selectiveEvaluator, genomeFactory, genomeList); // Finished. Return the evolution algorithm return ea; }