コード例 #1
0
ファイル: ShellRenderer.cs プロジェクト: ruly-rudel/ruly
        private void drawNonAlpha(ShellSurface surface, GLSL glsl)
        {
            var mats = surface.RenderLists;

            int max = mats.Count;

            // draw non-alpha material
//			GLES20.GlEnable(GLES20.GlCullFace);
            GLES20.GlEnable(2884);
            GLES20.GlCullFace(GLES20.GlBack);
            GLES20.GlDisable(GLES20.GlBlend);
            for (int r = 0; r < max; r++)
            {
                var     mat = mats[r];
                TexInfo tb  = null;
                if (mat.material.texture != null)
                {
                    tb = TextureFile.FetchTexInfo(mat.material.texture);
                }
                if (mat.material.diffuse_color[3] >= 1.0 && (tb == null || !tb.has_alpha))
                {
                    drawOneMaterial(glsl, surface, mat);
                }
            }
        }
コード例 #2
0
        /**
         * \brief Draw this mesh (in OpenGL).
         * @param modelViewProjection this mesh model-view-projection matrix.
         */
        public void DrawMesh(float[] modelViewProjection)
        {
            //set up gl state
            GLES20.GlEnable(GLES20.GlDepthTest);
            //GLES20.GlDisable(GLES20.GlCullFaceMode);
            GLES20.GlCullFace(GLES20.GlBack);
            GLES20.GlFrontFace(GLES20.GlCw);

            //set shader program to use
            GLES20.GlUseProgram(mProgram_GL_ID);
            RenderUtils.CheckGLError("DrawMesh:glUseProgram");

            //find attrib and unifroms in shader program
            int vertexHandle = GLES20.GlGetAttribLocation(mProgram_GL_ID, "vertexPosition");
            //int normalHandle = GLES20.GlGetAttribLocation(Program_GL_ID, "vertexNormal");
            int textureCoordHandle = GLES20.GlGetAttribLocation(mProgram_GL_ID, "vertexTexCoord");
            int mvpMatrixHandle    = GLES20.GlGetUniformLocation(mProgram_GL_ID, "modelViewProjectionMatrix");
            int texSampler2DHandle = GLES20.GlGetUniformLocation(mProgram_GL_ID, "texSampler2D");

            RenderUtils.CheckGLError("DrawMesh:get attribs and uniforms");

            //upload mesh data to OpenGL attribs
            GLES20.GlVertexAttribPointer(vertexHandle, 3, GLES20.GlFloat, false, 0, mVertices_Buffer);
            //GLES20.GlVertexAttribPointer(normalHandle, 3, GLES20.GlFloat, false, 0, Normals_Buffer);
            GLES20.GlVertexAttribPointer(textureCoordHandle, 2, GLES20.GlFloat, false, 0, mTexCoords_Buffer);
            RenderUtils.CheckGLError("DrawMesh:put attrib pointers");

            //enable gl attribs to use
            GLES20.GlEnableVertexAttribArray(vertexHandle);
            //GLES20.GlEnableVertexAttribArray(normalHandle);
            GLES20.GlEnableVertexAttribArray(textureCoordHandle);
            RenderUtils.CheckGLError("DrawMesh:enable attrib arrays");

            // activate texture 0, bind it, and pass to shader
            GLES20.GlActiveTexture(GLES20.GlTexture0);
            GLES20.GlBindTexture(GLES20.GlTexture2d, mTexture_GL_ID);
            GLES20.GlUniform1i(texSampler2DHandle, 0);
            RenderUtils.CheckGLError("DrawMesh:activate texturing");

            // pass the model view matrix to the shader
            GLES20.GlUniformMatrix4fv(mvpMatrixHandle, 1, false, modelViewProjection, 0);
            RenderUtils.CheckGLError("DrawMesh:upload matrix");

            // finally draw the teapot
            GLES20.GlDrawElements(GLES20.GlTriangles, mIndices_Number, GLES20.GlUnsignedShort, mIndex_Buffer);
            RenderUtils.CheckGLError("DrawMesh:draw elements");

            // disable the enabled arrays
            GLES20.GlDisableVertexAttribArray(vertexHandle);
            //GLES20.GlDisableVertexAttribArray(normalHandle);
            GLES20.GlDisableVertexAttribArray(textureCoordHandle);
            RenderUtils.CheckGLError("DrawMesh:disable attrib arrays");
        }
コード例 #3
0
ファイル: Renderer.cs プロジェクト: KirinDenis/SeaBan
        public void OnSurfaceCreated(IGL10 gl, Javax.Microedition.Khronos.Egl.EGLConfig config)
        {
            if (RenderManager.externalPaused)
            {
                RenderManager.initShaders();
            }
            else
            {
                RenderManager.createObjects();
            }

            GLES20.GlClearColor(0.1f, 0.1f, 0.9f, 0.0f);
            GLES20.GlEnable(GLES20.GlDepthTest);
            GLES20.GlEnable(GLES20.GlCullFaceMode);
            GLES20.GlCullFace(GLES20.GlBack);
        }
コード例 #4
0
        public void OnSurfaceCreated(IGL10 gl, Javax.Microedition.Khronos.Egl.EGLConfig config)
        {
            const float coord = 1.0f;

            // Cube coords
            // X, Y, Z = 1 vertex * 3 = 1 face * 12 = 1 cube
            float[] triangleVerticesData =
            {
                -coord, -coord, -coord,
                -coord, -coord, coord,
                -coord, coord,  coord,

                coord,  coord,  -coord,
                -coord, -coord, -coord,
                -coord, coord,  -coord,

                coord,  -coord, coord,
                -coord, -coord, -coord,
                coord,  -coord, -coord,

                coord,  coord,  -coord,
                coord,  -coord, -coord,
                -coord, -coord, -coord,

                -coord, -coord, -coord,
                -coord, coord,  coord,
                -coord, coord,  -coord,

                coord,  -coord, coord,
                -coord, -coord, coord,
                -coord, -coord, -coord,

                -coord, coord,  coord,
                -coord, -coord, coord,
                coord,  -coord, coord,

                coord,  coord,  coord,
                coord,  -coord, -coord,
                coord,  coord,  -coord,

                coord,  -coord, -coord,
                coord,  coord,  coord,
                coord,  -coord, coord,

                coord,  coord,  coord,
                coord,  coord,  -coord,
                -coord, coord,  -coord,

                coord,  coord,  coord,
                -coord, coord,  -coord,
                -coord, coord,  coord,

                coord,  coord,  coord,
                -coord, coord,  coord,
                coord,  -coord, coord
            };

            FloatBuffer mTriangleVertices = ByteBuffer.AllocateDirect(triangleVerticesData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer();

            mTriangleVertices.Put(triangleVerticesData).Flip();

            // Cube colors
            // R, G, B, A
            float[] triangleColorsData =
            {
                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f
            };

            FloatBuffer mTriangleColors = ByteBuffer.AllocateDirect(triangleColorsData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer();

            mTriangleColors.Put(triangleColorsData).Flip();

            //Cube texture UV Map
            float[] triangleTextureUVMapData =
            {
                0.0f, 0.0f,
                0.0f, 1.0f,
                1.0f, 0.0f,

                0.0f, 0.0f,
                0.0f, 1.0f,
                1.0f, 0.0f,

                0.0f, 0.0f,
                0.0f, 1.0f,
                1.0f, 0.0f,

                0.0f, 0.0f,
                0.0f, 1.0f,
                1.0f, 0.0f,

                0.0f, 0.0f,
                0.0f, 1.0f,
                1.0f, 0.0f,

                0.0f, 0.0f,
                0.0f, 1.0f,
                1.0f, 0.0f,

                0.0f, 0.0f,
                0.0f, 1.0f,
                1.0f, 0.0f,

                0.0f, 0.0f,
                0.0f, 1.0f,
                1.0f, 0.0f,

                0.0f, 0.0f,
                0.0f, 1.0f,
                1.0f, 0.0f,

                0.0f, 0.0f,
                0.0f, 1.0f,
                1.0f, 0.0f,

                0.0f, 0.0f,
                0.0f, 1.0f,
                1.0f, 0.0f,

                0.0f, 0.0f,
                0.0f, 1.0f,
                1.0f, 0.0f
            };

            FloatBuffer mTriangleTextureUVMap = ByteBuffer.AllocateDirect(triangleTextureUVMapData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer();

            mTriangleTextureUVMap.Put(triangleTextureUVMapData).Flip();

            //triagles normals
            //This normal array is not right, it is spacialy DO FOR demonstrate how normals work with faces when light is calculated at shader program
            float[] triangleNormalData =
            {
                // Front face
                0.0f,   0.0f,  1.0f,
                0.0f,   0.0f,  1.0f,
                0.0f,   0.0f,  1.0f,
                1.0f,   0.0f,  0.0f,
                1.0f,   0.0f,  0.0f,
                1.0f,   0.0f,  0.0f,

                // Right face
                1.0f,   0.0f,  0.0f,
                1.0f,   0.0f,  0.0f,
                1.0f,   0.0f,  0.0f,
                1.0f,   0.0f,  0.0f,
                1.0f,   0.0f,  0.0f,
                1.0f,   0.0f,  0.0f,

                // Back face
                0.0f,   0.0f, -1.0f,
                0.0f,   0.0f, -1.0f,
                0.0f,   0.0f, -1.0f,
                0.0f,   0.0f, -1.0f,
                0.0f,   0.0f, -1.0f,
                0.0f,   0.0f, -1.0f,

                // Left face
                -1.0f,  0.0f,  0.0f,
                -1.0f,  0.0f,  0.0f,
                -1.0f,  0.0f,  0.0f,
                -1.0f,  0.0f,  0.0f,
                -1.0f,  0.0f,  0.0f,
                -1.0f,  0.0f,  0.0f,

                // Top face
                0.0f,   1.0f,  0.0f,
                0.0f,   1.0f,  0.0f,
                0.0f,   1.0f,  0.0f,
                0.0f,   1.0f,  0.0f,
                0.0f,   1.0f,  0.0f,
                0.0f,   1.0f,  0.0f,

                // Bottom face
                0.0f,  -1.0f,  0.0f,
                0.0f,  -1.0f,  0.0f,
                0.0f,  -1.0f,  0.0f,
                0.0f,  -1.0f,  0.0f,
                0.0f,  -1.0f,  0.0f,
                0.0f,  -1.0f, 0.0f
            };

            FloatBuffer mTriangleNormal = ByteBuffer.AllocateDirect(triangleNormalData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer();

            mTriangleNormal.Put(triangleNormalData).Flip();

            //Data buffers to VBO
            GLES20.GlGenBuffers(4, VBOBuffers, 0); //2 buffers for vertices, texture and colors

            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[0]);
            GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleVertices.Capacity() * mBytesPerFloat, mTriangleVertices, GLES20.GlStaticDraw);

            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[1]);
            GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleColors.Capacity() * mBytesPerFloat, mTriangleColors, GLES20.GlStaticDraw);

            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[2]);
            GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleTextureUVMap.Capacity() * mBytesPerFloat, mTriangleTextureUVMap, GLES20.GlStaticDraw);

            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[3]);
            GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleNormal.Capacity() * mBytesPerFloat, mTriangleNormal, GLES20.GlStaticDraw);

            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, 0);

            //Load and setup texture

            GLES20.GlGenTextures(1, textureHandle, 0); //init 1 texture storage handle
            if (textureHandle[0] != 0)
            {
                //Android.Graphics cose class Matrix exists at both Android.Graphics and Android.OpenGL and this is only sample of using
                Android.Graphics.BitmapFactory.Options options = new Android.Graphics.BitmapFactory.Options();
                options.InScaled = false; // No pre-scaling
                Android.Graphics.Bitmap bitmap = Android.Graphics.BitmapFactory.DecodeResource(context.Resources, Resource.Drawable.texture1, options);
                GLES20.GlBindTexture(GLES20.GlTexture2d, textureHandle[0]);
                GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureMinFilter, GLES20.GlNearest);
                GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureMagFilter, GLES20.GlNearest);
                GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureWrapS, GLES20.GlClampToEdge);
                GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureWrapT, GLES20.GlClampToEdge);
                GLUtils.TexImage2D(GLES20.GlTexture2d, 0, bitmap, 0);
                bitmap.Recycle();
            }

            //Ask android to run RAM garbage cleaner
            System.GC.Collect();

            //Setup OpenGL ES
            GLES20.GlClearColor(0.0f, 0.0f, 0.0f, 0.0f);
            // GLES20.GlEnable(GLES20.GlDepthTest); //uncoment if needs enabled dpeth test
            GLES20.GlEnable(2884); // GlCullFace == 2884 see OpenGL documentation to this constant value
            GLES20.GlCullFace(GLES20.GlBack);


            // Position the eye behind the origin.
            float eyeX = 0.0f;
            float eyeY = 0.0f;
            float eyeZ = 4.5f;

            // We are looking toward the distance
            float lookX = 0.0f;
            float lookY = 0.0f;
            float lookZ = -5.0f;

            // Set our up vector. This is where our head would be pointing were we holding the camera.
            float upX = 0.0f;
            float upY = coord;
            float upZ = 0.0f;

            // Set the view matrix. This matrix can be said to represent the camera position.
            // NOTE: In OpenGL 1, a ModelView matrix is used, which is a combination of a model and
            // view matrix. In OpenGL 2, we can keep track of these matrices separately if we choose.
            Matrix.SetLookAtM(mViewMatrix, 0, eyeX, eyeY, eyeZ, lookX, lookY, lookZ, upX, upY, upZ);

            //all "attribute" variables is "triagles" VBO (arrays) items representation
            //a_Possition[0] <=> a_Color[0] <=> a_TextureCoord[0] <=> a_Normal[0]
            //a_Possition[1] <=> a_Color[1] <=> a_TextureCoord[1] <=> a_Normal[1]
            //...
            //a_Possition[n] <=> a_Color[n] <=> a_TextureCoord[n] <=> a_Normal[n] -- where "n" is object buffers length
            //-> HOW MANY faces in your object (model) in VBO -> how many times the vertex shader will be called by OpenGL
            string vertexShader =
                "uniform mat4 u_MVPMatrix;      \n"         // A constant representing the combined model/view/projection matrix.
                + "uniform vec3 u_LightPos;       \n"       // A constant representing the light source position
                + "attribute vec4 a_Position;     \n"       // Per-vertex position information we will pass in. (it means vec4[x,y,z,w] but we put only x,y,z at this sample
                + "attribute vec4 a_Color;        \n"       // Per-vertex color information we will pass in.
                + "varying vec4 v_Color;          \n"       // This will be passed into the fragment shader.
                + "attribute vec2 a_TextureCoord; \n"       // Per-vertex texture UVMap information we will pass in.
                + "varying vec2 v_TextureCoord;   \n"       // This will be passed into the fragment shader.
                + "attribute vec3 a_Normal;       \n"       // Per-vertex normals information we will pass in.
                + "void main()                    \n"       // The entry point for our vertex shader.
                + "{                              \n"
                //light calculation section for fragment shader
                + "   vec3 modelViewVertex = vec3(u_MVPMatrix * a_Position);\n"
                + "   vec3 modelViewNormal = vec3(u_MVPMatrix * vec4(a_Normal, 0.0));\n"
                + "   float distance = length(u_LightPos - modelViewVertex);\n"
                + "   vec3 lightVector = normalize(u_LightPos - modelViewVertex);\n"
                + "   float diffuse = max(dot(modelViewNormal, lightVector), 0.1);\n"
                + "   diffuse = diffuse * (1.0 / (1.0 + (0.25 * distance * distance)));\n"
                + "   v_Color = a_Color * vec4(diffuse);\n" //Pass the color with light aspect to fragment shader
                + "   v_TextureCoord = a_TextureCoord; \n"  // Pass the texture coordinate through to the fragment shader. It will be interpolated across the triangle.
                + "   gl_Position = u_MVPMatrix   \n"       // gl_Position is a special variable used to store the final position.
                + "                 * a_Position; \n"       // Multiply the vertex by the matrix to get the final point in normalized screen coordinates.
                + "}                              \n";

            string fragmentShader =
                "precision mediump float;       \n"                                       // Set the default precision to medium. We don't need as high of a
                                                                                          // precision in the fragment shader.
                + "varying vec4 v_Color;          \n"                                     // This is the color from the vertex shader interpolated across the triangle per fragment.
                + "varying vec2 v_TextureCoord;   \n"                                     // This is the texture coordinate from the vertex shader interpolated across the triangle per fragment.
                + "uniform sampler2D u_Texture;   \n"                                     // This is the texture image handler
                + "void main()                    \n"                                     // The entry point for our fragment shader.
                + "{                              \n"
                + "   gl_FragColor = texture2D(u_Texture, v_TextureCoord) * v_Color;  \n" // Pass the color directly through the pipeline.
                + "}                              \n";

            int vertexShaderHandle = GLES20.GlCreateShader(GLES20.GlVertexShader);

            if (vertexShaderHandle != 0)
            {
                // Pass in the shader source.
                GLES20.GlShaderSource(vertexShaderHandle, vertexShader);

                // Compile the shader.
                GLES20.GlCompileShader(vertexShaderHandle);

                // Get the compilation status.
                int[] compileStatus = new int[1];
                GLES20.GlGetShaderiv(vertexShaderHandle, GLES20.GlCompileStatus, compileStatus, 0);

                // If the compilation failed, delete the shader.
                if (compileStatus[0] == 0)
                {
                    GLES20.GlDeleteShader(vertexShaderHandle);
                    vertexShaderHandle = 0;
                }
            }

            if (vertexShaderHandle == 0)
            {
                throw new Exception("Error creating vertex shader.");
            }

            // Load in the fragment shader shader.
            int fragmentShaderHandle = GLES20.GlCreateShader(GLES20.GlFragmentShader);

            if (fragmentShaderHandle != 0)
            {
                // Pass in the shader source.
                GLES20.GlShaderSource(fragmentShaderHandle, fragmentShader);

                // Compile the shader.
                GLES20.GlCompileShader(fragmentShaderHandle);

                // Get the compilation status.
                int[] compileStatus = new int[1];
                GLES20.GlGetShaderiv(fragmentShaderHandle, GLES20.GlCompileStatus, compileStatus, 0);

                // If the compilation failed, delete the shader.
                if (compileStatus[0] == 0)
                {
                    GLES20.GlDeleteShader(fragmentShaderHandle);
                    fragmentShaderHandle = 0;
                }
            }

            if (fragmentShaderHandle == 0)
            {
                throw new Exception("Error creating fragment shader.");
            }

            // Create a program object and store the handle to it.
            int programHandle = GLES20.GlCreateProgram();

            if (programHandle != 0)
            {
                // Bind the vertex shader to the program.
                GLES20.GlAttachShader(programHandle, vertexShaderHandle);

                // Bind the fragment shader to the program.
                GLES20.GlAttachShader(programHandle, fragmentShaderHandle);

                // Bind attributes
                GLES20.GlBindAttribLocation(programHandle, 0, "a_Position");
                GLES20.GlBindAttribLocation(programHandle, 1, "a_Color");
                GLES20.GlBindAttribLocation(programHandle, 2, "a_TextureCoord");
                GLES20.GlBindAttribLocation(programHandle, 3, "a_Normal");

                // Link the two shaders together into a program.
                GLES20.GlLinkProgram(programHandle);

                // Get the link status.
                int[] linkStatus = new int[1];
                GLES20.GlGetProgramiv(programHandle, GLES20.GlLinkStatus, linkStatus, 0);

                // If the link failed, delete the program.
                if (linkStatus[0] == 0)
                {
                    GLES20.GlDeleteProgram(programHandle);
                    programHandle = 0;
                }
            }

            if (programHandle == 0)
            {
                throw new Exception("Error creating program.");
            }

            // Set program handles. These will later be used to pass in values to the program.
            mMVPMatrixHandle    = GLES20.GlGetUniformLocation(programHandle, "u_MVPMatrix");
            mLightPos           = GLES20.GlGetUniformLocation(programHandle, "u_LightPos");
            mPositionHandle     = GLES20.GlGetAttribLocation(programHandle, "a_Position");
            mColorHandle        = GLES20.GlGetAttribLocation(programHandle, "a_Color");
            mTextureCoordHandle = GLES20.GlGetAttribLocation(programHandle, "a_TextureCoord");
            mNormalHandle       = GLES20.GlGetAttribLocation(programHandle, "a_Normal");
            mTextureHandle      = GLES20.GlGetUniformLocation(programHandle, "u_Texture");


            // Tell OpenGL to use this program when rendering.
            GLES20.GlUseProgram(programHandle);
        }
コード例 #5
0
ファイル: Renderer.cs プロジェクト: OlehShostak/MobileLabs_4
        public void OnSurfaceCreated(IGL10 gl, Javax.Microedition.Khronos.Egl.EGLConfig config)
        {
            mTriangle1Vertices = ByteBuffer.AllocateDirect(triangle1VerticesData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer();
            mTriangle1Vertices.Put(triangle1VerticesData).Position(0);

            mTriangle1Vertices2 = ByteBuffer.AllocateDirect(triangle1VerticesData2.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer();
            mTriangle1Vertices2.Put(triangle1VerticesData2).Position(0);

            GLES20.GlClearColor(1.0f, 1.0f, 1.0f, 1.0f);

            //GLES20.GlEnable(GLES20.GlDepthTest);
            //GLES20.GlEnable(2884); //GlCullFace == 2884
            GLES20.GlCullFace(GLES20.GlFrontAndBack);

            // Position the eye behind the origin.
            float eyeX = 0.0f;
            float eyeY = 0.0f;
            float eyeZ = 1.5f;

            // We are looking toward the distance
            float lookX = 0.0f;
            float lookY = 0.0f;
            float lookZ = -10f;

            // Set our up vector. This is where our head would be pointing were we holding the camera.
            float upX = 0.0f;
            float upY = 1.0f;
            float upZ = -5.0f;

            // Set the view matrix. This matrix can be said to represent the camera position.
            // NOTE: In OpenGL 1, a ModelView matrix is used, which is a combination of a model and
            // view matrix. In OpenGL 2, we can keep track of these matrices separately if we choose.
            Matrix.SetLookAtM(mViewMatrix, 0, eyeX, eyeY, eyeZ, lookX, lookY, lookZ, upX, upY, upZ);

            string vertexShader =
                "uniform mat4 u_MVPMatrix;      \n"         // A constant representing the combined model/view/projection matrix.
                + "attribute vec4 a_Position;     \n"       // Per-vertex position information we will pass in.
                + "attribute vec4 a_Color;        \n"       // Per-vertex color information we will pass in.
                + "varying vec4 v_Color;          \n"       // This will be passed into the fragment shader.
                + "void main()                    \n"       // The entry point for our vertex shader.
                + "{                              \n"
                + "   v_Color = a_Color;          \n"       // Pass the color through to the fragment shader. It will be interpolated across the triangle.
                + "   gl_Position = u_MVPMatrix   \n"       // gl_Position is a special variable used to store the final position.
                + "                 * a_Position; \n"       // Multiply the vertex by the matrix to get the final point in normalized screen coordinates.
                + "}                              \n";

            string fragmentShader =
                "precision mediump float;       \n"     // Set the default precision to medium. We don't need as high of a
                                                        // precision in the fragment shader.
                + "varying vec4 v_Color;          \n"   // This is the color from the vertex shader interpolated across the triangle per fragment.
                + "void main()                    \n"   // The entry point for our fragment shader.
                + "{                              \n"
                + "   gl_FragColor = v_Color;     \n"   // Pass the color directly through the pipeline.
                + "}                              \n";

            int vertexShaderHandle = GLES20.GlCreateShader(GLES20.GlVertexShader);

            if (vertexShaderHandle != 0)
            {
                // Pass in the shader source.
                GLES20.GlShaderSource(vertexShaderHandle, vertexShader);

                // Compile the shader.
                GLES20.GlCompileShader(vertexShaderHandle);

                // Get the compilation status.
                int[] compileStatus = new int[1];
                GLES20.GlGetShaderiv(vertexShaderHandle, GLES20.GlCompileStatus, compileStatus, 0);

                // If the compilation failed, delete the shader.
                if (compileStatus[0] == 0)
                {
                    GLES20.GlDeleteShader(vertexShaderHandle);
                    vertexShaderHandle = 0;
                }
            }

            if (vertexShaderHandle == 0)
            {
                throw new Exception("Error creating vertex shader.");
            }

            // Load in the fragment shader shader.
            int fragmentShaderHandle = GLES20.GlCreateShader(GLES20.GlFragmentShader);

            if (fragmentShaderHandle != 0)
            {
                // Pass in the shader source.
                GLES20.GlShaderSource(fragmentShaderHandle, fragmentShader);

                // Compile the shader.
                GLES20.GlCompileShader(fragmentShaderHandle);

                // Get the compilation status.
                int[] compileStatus = new int[1];
                GLES20.GlGetShaderiv(fragmentShaderHandle, GLES20.GlCompileStatus, compileStatus, 0);

                // If the compilation failed, delete the shader.
                if (compileStatus[0] == 0)
                {
                    GLES20.GlDeleteShader(fragmentShaderHandle);
                    fragmentShaderHandle = 0;
                }
            }

            if (fragmentShaderHandle == 0)
            {
                throw new Exception("Error creating fragment shader.");
            }

            // Create a program object and store the handle to it.
            int programHandle = GLES20.GlCreateProgram();

            if (programHandle != 0)
            {
                // Bind the vertex shader to the program.
                GLES20.GlAttachShader(programHandle, vertexShaderHandle);

                // Bind the fragment shader to the program.
                GLES20.GlAttachShader(programHandle, fragmentShaderHandle);

                // Bind attributes
                GLES20.GlBindAttribLocation(programHandle, 0, "a_Position");
                GLES20.GlBindAttribLocation(programHandle, 1, "a_Color");

                // Link the two shaders together into a program.
                GLES20.GlLinkProgram(programHandle);

                // Get the link status.
                int[] linkStatus = new int[1];
                GLES20.GlGetProgramiv(programHandle, GLES20.GlLinkStatus, linkStatus, 0);

                // If the link failed, delete the program.
                if (linkStatus[0] == 0)
                {
                    GLES20.GlDeleteProgram(programHandle);
                    programHandle = 0;
                }
            }

            if (programHandle == 0)
            {
                throw new Exception("Error creating program.");
            }

            // Set program handles. These will later be used to pass in values to the program.
            mMVPMatrixHandle = GLES20.GlGetUniformLocation(programHandle, "u_MVPMatrix");
            mPositionHandle  = GLES20.GlGetAttribLocation(programHandle, "a_Position");
            mColorHandle     = GLES20.GlGetAttribLocation(programHandle, "a_Color");

            // Tell OpenGL to use this program when rendering.
            GLES20.GlUseProgram(programHandle);
        }
コード例 #6
0
        /**
         * \brief Draw the video mesh /with keyframe and icons too) (in OpenGL).
         * @param modelView the model-view matrix.
         * @param projection the projection matrix.
         */
        public void DrawMesh(float[] modelView, float[] projection)
        {
            PikkartVideoPlayer.VideoSate.VIDEO_STATE currentStatus = PikkartVideoPlayer.VideoSate.VIDEO_STATE.NOT_READY;
            if (mPikkartVideoPlayer != null)
            {
                currentStatus = mPikkartVideoPlayer.getVideoStatus();
                if (!mPikkartVideoPlayer.isFullscreen())
                {
                    if (mPikkartVideoPlayer.getVideoStatus() == PikkartVideoPlayer.VideoSate.VIDEO_STATE.PLAYING)
                    {
                        mPikkartVideoPlayer.updateVideoData();
                    }
                    mPikkartVideoPlayer.getSurfaceTextureTransformMatrix(mTexCoordTransformationMatrix);
                    SetVideoDimensions(mPikkartVideoPlayer.getVideoWidth(), mPikkartVideoPlayer.getVideoHeight(), mTexCoordTransformationMatrix);
                    mVideoTexCoords_Buffer = FillBuffer(videoTextureCoordsTransformed);
                }
            }

            Marker currentMarker = RecognitionFragment.CurrentMarker;

            if (currentMarker != null)
            {
                float markerWidth  = currentMarker.Width;
                float markerHeight = currentMarker.Height;

                GLES20.GlEnable(GLES20.GlDepthTest);
                //GLES20.GlDisable(GLES20.GlCullFaceMode);
                GLES20.GlCullFace(GLES20.GlBack);
                GLES20.GlFrontFace(GLES20.GlCw);

                if ((currentStatus == PikkartVideoPlayer.VideoSate.VIDEO_STATE.READY) ||
                    (currentStatus == PikkartVideoPlayer.VideoSate.VIDEO_STATE.END) ||
                    (currentStatus == PikkartVideoPlayer.VideoSate.VIDEO_STATE.NOT_READY) ||
                    (currentStatus == PikkartVideoPlayer.VideoSate.VIDEO_STATE.ERROR))
                {
                    float[] scaleMatrix = new float[16];
                    RenderUtils.matrix44Identity(scaleMatrix);
                    scaleMatrix[0]  = markerWidth;
                    scaleMatrix[5]  = markerWidth * keyframeAspectRatio;
                    scaleMatrix[10] = markerWidth;

                    float[] temp_mv = new float[16];
                    RenderUtils.matrixMultiply(4, 4, modelView, 4, 4, scaleMatrix, temp_mv);

                    float[] temp_mvp = new float[16];
                    RenderUtils.matrixMultiply(4, 4, projection, 4, 4, temp_mv, temp_mvp);
                    float[] mvpMatrix = new float[16];
                    RenderUtils.matrix44Transpose(temp_mvp, mvpMatrix);

                    DrawKeyFrame(mvpMatrix);
                }
                else
                {
                    float[] scaleMatrix = new float[16];
                    RenderUtils.matrix44Identity(scaleMatrix);
                    scaleMatrix[0]  = markerWidth;
                    scaleMatrix[5]  = markerWidth * videoAspectRatio;
                    scaleMatrix[10] = markerWidth;

                    float[] temp_mv = new float[16];
                    RenderUtils.matrixMultiply(4, 4, modelView, 4, 4, scaleMatrix, temp_mv);

                    float[] temp_mvp = new float[16];
                    RenderUtils.matrixMultiply(4, 4, projection, 4, 4, temp_mv, temp_mvp);
                    float[] mvpMatrix = new float[16];
                    RenderUtils.matrix44Transpose(temp_mvp, mvpMatrix);

                    DrawVideo(mvpMatrix);
                }

                if ((currentStatus == PikkartVideoPlayer.VideoSate.VIDEO_STATE.READY) ||
                    (currentStatus == PikkartVideoPlayer.VideoSate.VIDEO_STATE.END) ||
                    (currentStatus == PikkartVideoPlayer.VideoSate.VIDEO_STATE.PAUSED) ||
                    (currentStatus == PikkartVideoPlayer.VideoSate.VIDEO_STATE.NOT_READY) ||
                    (currentStatus == PikkartVideoPlayer.VideoSate.VIDEO_STATE.ERROR))
                {
                    float[] translateMatrix = new float[16];
                    RenderUtils.matrix44Identity(translateMatrix);
                    //scale a bit
                    translateMatrix[0]  = 0.4f;
                    translateMatrix[5]  = 0.4f;
                    translateMatrix[10] = 0.4f;
                    //translate a bit
                    translateMatrix[3]  = 0.0f;
                    translateMatrix[7]  = 0.45f;
                    translateMatrix[11] = -0.05f;

                    float[] temp_mv = new float[16];
                    RenderUtils.matrixMultiply(4, 4, modelView, 4, 4, translateMatrix, temp_mv);

                    float[] temp_mvp = new float[16];
                    RenderUtils.matrixMultiply(4, 4, projection, 4, 4, temp_mv, temp_mvp);
                    float[] mvpMatrix = new float[16];
                    RenderUtils.matrix44Transpose(temp_mvp, mvpMatrix);

                    DrawIcon(mvpMatrix, currentStatus);
                }
                RenderUtils.CheckGLError("VideoMesh:end video renderer");
            }
        }
コード例 #7
0
        public void OnSurfaceCreated(IGL10 gl, Javax.Microedition.Khronos.Egl.EGLConfig config)
        {
            const float coord = 1.0f;

            ObjParser model3D = new ObjParser();

            List <byte[]> test1 = model3D.ParsedObject(context, "buggy");

            float[] vertexArray = new float[test1[0].Length / 4];
            System.Buffer.BlockCopy(test1[0], 0, vertexArray, 0, (int)test1[0].Length);

            modelVerticesData = vertexArray;

            FloatBuffer mTriangleVertices = ByteBuffer.AllocateDirect(modelVerticesData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer();

            mTriangleVertices.Put(modelVerticesData).Flip();

            // Cube colors
            // R, G, B, A
            float[] modelColorsData =
            {
                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f,

                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f
            };

            FloatBuffer mTriangleColors = ByteBuffer.AllocateDirect(modelColorsData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer();

            mTriangleColors.Put(modelColorsData).Flip();


            float[] textureUVMapArray = new float[test1[1].Length / 4];
            System.Buffer.BlockCopy(test1[1], 0, textureUVMapArray, 0, (int)test1[1].Length);

            modelTextureUVMapData = textureUVMapArray;

            FloatBuffer mTriangleTextureUVMap = ByteBuffer.AllocateDirect(modelTextureUVMapData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer();

            mTriangleTextureUVMap.Put(modelTextureUVMapData).Flip();



            //Data buffers to VBO
            GLES20.GlGenBuffers(3, VBOBuffers, 0); //2 buffers for vertices, texture and colors

            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[0]);
            GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleVertices.Capacity() * mBytesPerFloat, mTriangleVertices, GLES20.GlStaticDraw);

            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[1]);
            GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleColors.Capacity() * mBytesPerFloat, mTriangleColors, GLES20.GlStaticDraw);

            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[2]);
            GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleTextureUVMap.Capacity() * mBytesPerFloat, mTriangleTextureUVMap, GLES20.GlStaticDraw);

            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, 0);

            //Load and setup texture

            GLES20.GlGenTextures(1, textureHandle, 0); //init 1 texture storage handle
            if (textureHandle[0] != 0)
            {
                //Android.Graphics cose class Matrix exists at both Android.Graphics and Android.OpenGL and this is only sample of using
                Android.Graphics.BitmapFactory.Options options = new Android.Graphics.BitmapFactory.Options();
                options.InScaled = false; // No pre-scaling
                Android.Graphics.Bitmap bitmap = Android.Graphics.BitmapFactory.DecodeResource(context.Resources, Resource.Drawable.iam, options);
                GLES20.GlBindTexture(GLES20.GlTexture2d, textureHandle[0]);
                GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureMinFilter, GLES20.GlNearest);
                GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureMagFilter, GLES20.GlNearest);
                GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureWrapS, GLES20.GlClampToEdge);
                GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureWrapT, GLES20.GlClampToEdge);
                GLUtils.TexImage2D(GLES20.GlTexture2d, 0, bitmap, 0);
                bitmap.Recycle();
            }

            //Ask android to run RAM garbage cleaner
            System.GC.Collect();

            //Setup OpenGL ES
            GLES20.GlClearColor(coord, coord, coord, coord);
            // GLES20.GlEnable(GLES20.GlDepthTest); //uncoment if needs enabled dpeth test
            GLES20.GlEnable(2884); // GlCullFace == 2884 see OpenGL documentation to this constant value
            GLES20.GlCullFace(GLES20.GlBack);


            // Position the eye behind the origin.
            float eyeX = 0.0f;
            float eyeY = 0.0f;
            float eyeZ = 4.5f;

            // We are looking toward the distance
            float lookX = 0.0f;
            float lookY = 0.0f;
            float lookZ = -5.0f;

            // Set our up vector. This is where our head would be pointing were we holding the camera.
            float upX = 0.0f;
            float upY = coord;
            float upZ = 0.0f;

            // Set the view matrix. This matrix can be said to represent the camera position.
            // NOTE: In OpenGL 1, a ModelView matrix is used, which is a combination of a model and
            // view matrix. In OpenGL 2, we can keep track of these matrices separately if we choose.
            Matrix.SetLookAtM(mViewMatrix, 0, eyeX, eyeY, eyeZ, lookX, lookY, lookZ, upX, upY, upZ);

            string vertexShader =
                "uniform mat4 u_MVPMatrix;      \n"         // A constant representing the combined model/view/projection matrix.
                + "attribute vec4 a_Position;     \n"       // Per-vertex position information we will pass in.
                + "attribute vec4 a_Color;        \n"       // Per-vertex color information we will pass in.
                + "varying vec4 v_Color;          \n"       // This will be passed into the fragment shader.
                + "attribute vec2 a_TextureCoord; \n"
                + "varying vec2 v_TextureCoord;   \n"
                + "void main()                    \n"       // The entry point for our vertex shader.
                + "{                              \n"
                + "   v_TextureCoord = a_TextureCoord; \n"  // Pass the color through to the fragment shader. It will be interpolated across the triangle.
                + "   v_Color = a_Color;          \n"       // Pass the color through to the fragment shader. It will be interpolated across the triangle.
                + "   gl_Position = u_MVPMatrix   \n"       // gl_Position is a special variable used to store the final position.
                + "                 * a_Position; \n"       // Multiply the vertex by the matrix to get the final point in normalized screen coordinates.
                + "}                              \n";

            string fragmentShader =
                "precision mediump float;       \n"     // Set the default precision to medium. We don't need as high of a
                                                        // precision in the fragment shader.
                + "varying vec4 v_Color;          \n"   // This is the color from the vertex shader interpolated across the triangle per fragment.
                + "varying vec2 v_TextureCoord;   \n"
                + "uniform sampler2D u_Texture;   \n"
                + "void main()                    \n"                           // The entry point for our fragment shader.
                + "{                              \n"
                + "   gl_FragColor = texture2D(u_Texture, v_TextureCoord);  \n" // Pass the color directly through the pipeline.
                + "}                              \n";


            vertexShader   = string.Empty;
            fragmentShader = string.Empty;

            int          resourceId   = context.Resources.GetIdentifier("vertexshadervladimir1", "raw", context.PackageName);
            Stream       fileStream   = context.Resources.OpenRawResource(resourceId);
            StreamReader streamReader = new StreamReader(fileStream);

            string line = string.Empty;

            while ((line = streamReader.ReadLine()) != null)
            {
                vertexShader += line + "\n";
            }

            resourceId   = context.Resources.GetIdentifier("fragmentshadervladimir1", "raw", context.PackageName);
            fileStream   = context.Resources.OpenRawResource(resourceId);
            streamReader = new StreamReader(fileStream);
            while ((line = streamReader.ReadLine()) != null)
            {
                fragmentShader += line + "\n";
            }

            int vertexShaderHandle = GLES20.GlCreateShader(GLES20.GlVertexShader);

            if (vertexShaderHandle != 0)
            {
                // Pass in the shader source.
                GLES20.GlShaderSource(vertexShaderHandle, vertexShader);

                // Compile the shader.
                GLES20.GlCompileShader(vertexShaderHandle);

                // Get the compilation status.
                int[] compileStatus = new int[1];
                GLES20.GlGetShaderiv(vertexShaderHandle, GLES20.GlCompileStatus, compileStatus, 0);

                // If the compilation failed, delete the shader.
                if (compileStatus[0] == 0)
                {
                    GLES20.GlDeleteShader(vertexShaderHandle);
                    vertexShaderHandle = 0;
                }
            }

            if (vertexShaderHandle == 0)
            {
                throw new Exception("Error creating vertex shader.");
            }

            // Load in the fragment shader shader.
            int fragmentShaderHandle = GLES20.GlCreateShader(GLES20.GlFragmentShader);

            if (fragmentShaderHandle != 0)
            {
                // Pass in the shader source.
                GLES20.GlShaderSource(fragmentShaderHandle, fragmentShader);

                // Compile the shader.
                GLES20.GlCompileShader(fragmentShaderHandle);

                // Get the compilation status.
                int[] compileStatus = new int[1];
                GLES20.GlGetShaderiv(fragmentShaderHandle, GLES20.GlCompileStatus, compileStatus, 0);

                // If the compilation failed, delete the shader.
                if (compileStatus[0] == 0)
                {
                    GLES20.GlDeleteShader(fragmentShaderHandle);
                    fragmentShaderHandle = 0;
                }
            }

            if (fragmentShaderHandle == 0)
            {
                throw new Exception("Error creating fragment shader.");
            }

            // Create a program object and store the handle to it.
            int programHandle = GLES20.GlCreateProgram();

            if (programHandle != 0)
            {
                // Bind the vertex shader to the program.
                GLES20.GlAttachShader(programHandle, vertexShaderHandle);

                // Bind the fragment shader to the program.
                GLES20.GlAttachShader(programHandle, fragmentShaderHandle);

                // Bind attributes
                GLES20.GlBindAttribLocation(programHandle, 0, "a_Position");
                GLES20.GlBindAttribLocation(programHandle, 1, "a_Color");
                GLES20.GlBindAttribLocation(programHandle, 2, "a_TextureCoord");

                // Link the two shaders together into a program.
                GLES20.GlLinkProgram(programHandle);

                // Get the link status.
                int[] linkStatus = new int[1];
                GLES20.GlGetProgramiv(programHandle, GLES20.GlLinkStatus, linkStatus, 0);

                // If the link failed, delete the program.
                if (linkStatus[0] == 0)
                {
                    GLES20.GlDeleteProgram(programHandle);
                    programHandle = 0;
                }
            }

            if (programHandle == 0)
            {
                throw new Exception("Error creating program.");
            }

            // Set program handles. These will later be used to pass in values to the program.
            mMVPMatrixHandle    = GLES20.GlGetUniformLocation(programHandle, "u_MVPMatrix");
            mPositionHandle     = GLES20.GlGetAttribLocation(programHandle, "a_Position");
            mColorHandle        = GLES20.GlGetAttribLocation(programHandle, "a_Color");
            mTextureCoordHandle = GLES20.GlGetAttribLocation(programHandle, "a_TextureCoord");
            mTextureHandle      = GLES20.GlGetUniformLocation(programHandle, "u_Texture");


            // Tell OpenGL to use this program when rendering.
            GLES20.GlUseProgram(programHandle);
        }