/** * Creates and initializes OpenGL resources needed for rendering the model. * * @param context Context for loading the shader and below-named model and texture assets. * @param objAssetName Name of the OBJ file containing the model geometry. * @param diffuseTextureAssetName Name of the PNG file containing the diffuse texture map. */ public void CreateOnGlThread(Context context, string objAssetName, string diffuseTextureAssetName) { // Read the texture. var textureBitmap = BitmapFactory.DecodeStream(context.Assets.Open(diffuseTextureAssetName)); GLES20.GlActiveTexture(GLES20.GlTexture0); GLES20.GlGenTextures(mTextures.Length, mTextures, 0); GLES20.GlBindTexture(GLES20.GlTexture2d, mTextures[0]); GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureMinFilter, GLES20.GlLinearMipmapLinear); GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureMagFilter, GLES20.GlLinear); GLUtils.TexImage2D(GLES20.GlTexture2d, 0, textureBitmap, 0); GLES20.GlGenerateMipmap(GLES20.GlTexture2d); GLES20.GlBindTexture(GLES20.GlTexture2d, 0); textureBitmap.Recycle(); ShaderUtil.CheckGLError(TAG, "Texture loading"); // Read the obj file. var objInputStream = context.Assets.Open(objAssetName); var obj = ObjReader.Read(objInputStream); // Prepare the Obj so that its structure is suitable for // rendering with OpenGL: // 1. Triangulate it // 2. Make sure that texture coordinates are not ambiguous // 3. Make sure that normals are not ambiguous // 4. Convert it to single-indexed data obj = ObjUtils.ConvertToRenderable(obj); // OpenGL does not use Java arrays. ByteBuffers are used instead to provide data in a format // that OpenGL understands. // Obtain the data from the OBJ, as direct buffers: IntBuffer wideIndices = ObjData.GetFaceVertexIndices(obj, 3); FloatBuffer vertices = ObjData.GetVertices(obj); FloatBuffer texCoords = ObjData.GetTexCoords(obj, 2); FloatBuffer normals = ObjData.GetNormals(obj); // Convert int indices to shorts for GL ES 2.0 compatibility ShortBuffer indices = ByteBuffer.AllocateDirect(2 * wideIndices.Limit()) .Order(ByteOrder.NativeOrder()).AsShortBuffer(); while (wideIndices.HasRemaining) { indices.Put((short)wideIndices.Get()); } indices.Rewind(); var buffers = new int[2]; GLES20.GlGenBuffers(2, buffers, 0); mVertexBufferId = buffers[0]; mIndexBufferId = buffers[1]; // Load vertex buffer mVerticesBaseAddress = 0; mTexCoordsBaseAddress = mVerticesBaseAddress + 4 * vertices.Limit(); mNormalsBaseAddress = mTexCoordsBaseAddress + 4 * texCoords.Limit(); int totalBytes = mNormalsBaseAddress + 4 * normals.Limit(); GLES20.GlBindBuffer(GLES20.GlArrayBuffer, mVertexBufferId); GLES20.GlBufferData(GLES20.GlArrayBuffer, totalBytes, null, GLES20.GlStaticDraw); GLES20.GlBufferSubData( GLES20.GlArrayBuffer, mVerticesBaseAddress, 4 * vertices.Limit(), vertices); GLES20.GlBufferSubData( GLES20.GlArrayBuffer, mTexCoordsBaseAddress, 4 * texCoords.Limit(), texCoords); GLES20.GlBufferSubData( GLES20.GlArrayBuffer, mNormalsBaseAddress, 4 * normals.Limit(), normals); GLES20.GlBindBuffer(GLES20.GlArrayBuffer, 0); // Load index buffer GLES20.GlBindBuffer(GLES20.GlElementArrayBuffer, mIndexBufferId); mIndexCount = indices.Limit(); GLES20.GlBufferData( GLES20.GlElementArrayBuffer, 2 * mIndexCount, indices, GLES20.GlStaticDraw); GLES20.GlBindBuffer(GLES20.GlElementArrayBuffer, 0); ShaderUtil.CheckGLError(TAG, "OBJ buffer load"); int vertexShader = ShaderUtil.LoadGLShader(TAG, context, GLES20.GlVertexShader, Resource.Raw.object_vertex); int fragmentShader = ShaderUtil.LoadGLShader(TAG, context, GLES20.GlFragmentShader, Resource.Raw.object_fragment); mProgram = GLES20.GlCreateProgram(); GLES20.GlAttachShader(mProgram, vertexShader); GLES20.GlAttachShader(mProgram, fragmentShader); GLES20.GlLinkProgram(mProgram); GLES20.GlUseProgram(mProgram); ShaderUtil.CheckGLError(TAG, "Program creation"); mModelViewUniform = GLES20.GlGetUniformLocation(mProgram, "u_ModelView"); mModelViewProjectionUniform = GLES20.GlGetUniformLocation(mProgram, "u_ModelViewProjection"); mPositionAttribute = GLES20.GlGetAttribLocation(mProgram, "a_Position"); mNormalAttribute = GLES20.GlGetAttribLocation(mProgram, "a_Normal"); mTexCoordAttribute = GLES20.GlGetAttribLocation(mProgram, "a_TexCoord"); mTextureUniform = GLES20.GlGetUniformLocation(mProgram, "u_Texture"); mLightingParametersUniform = GLES20.GlGetUniformLocation(mProgram, "u_LightingParameters"); mMaterialParametersUniform = GLES20.GlGetUniformLocation(mProgram, "u_MaterialParameters"); ShaderUtil.CheckGLError(TAG, "Program parameters"); Android.Opengl.Matrix.SetIdentityM(mModelMatrix, 0); }
public Program() { _handle = GLES20.GlCreateProgram(); }
public void OnSurfaceCreated(IGL10 gl, Javax.Microedition.Khronos.Egl.EGLConfig config) { const float coord = 1.0f; //FloatBuffer mTriangleVertices = ByteBuffer.AllocateDirect(triangleVerticesData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer(); //mTriangleVertices.Put(triangleVerticesData).Flip(); // Cube colors // R, G, B, A float[] triangleColorsData = { 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f }; FloatBuffer mTriangleColors = ByteBuffer.AllocateDirect(triangleColorsData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer(); mTriangleColors.Put(triangleColorsData).Flip(); //Cube texture UV Map float[] triangleTextureUVMapData = { 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f }; FloatBuffer mTriangleTextureUVMap = ByteBuffer.AllocateDirect(triangleTextureUVMapData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer(); mTriangleTextureUVMap.Put(triangleTextureUVMapData).Flip(); //triagles normals //This normal array is not right, it is spacialy DO FOR demonstrate how normals work with faces when light is calculated at shader program float[] triangleNormalData = { // Front face 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // Right face 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // Back face 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, // Left face -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // Top face 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // Bottom face 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f }; FloatBuffer mTriangleNormal = ByteBuffer.AllocateDirect(triangleNormalData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer(); mTriangleNormal.Put(triangleNormalData).Flip(); //Data buffers to VBO GLES20.GlGenBuffers(4, VBOBuffers, 0); //2 buffers for vertices, texture and colors //-------------------------------------------- //int resourceId = //context.Resources.GetIdentifier("object1_objvertex", "raw", context.PackageName); GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[0]); float[] floatArray; long size; // Vertex FloatBuffer vertexBuffer; Stream fileIn = context.Resources.OpenRawResource(Resource.Raw.OldHouse_objvertex) as Stream; MemoryStream m = new MemoryStream(); fileIn.CopyTo(m); size = m.Length; floatArray = new float[size / 4]; objectSize = (int)(size / 4 / 3); System.Buffer.BlockCopy(m.ToArray(), 0, floatArray, 0, (int)size); vertexBuffer = FloatBuffer.Allocate((int)size / 4); // float array to vertexBuffer.Put(floatArray, 0, (int)size / 4); vertexBuffer.Flip(); //VBOManager.setSize(fileName, vertexBuffer.Capacity() / 4); //is size of vertex count = 1 vertex 4 float x,y,z, 1 GLES20.GlBufferData(GLES20.GlArrayBuffer, vertexBuffer.Capacity() * mBytesPerFloat, vertexBuffer, GLES20.GlStaticDraw); floatArray = null; vertexBuffer = null; fileIn.Close(); m.Close(); //-------------------------------------------- //GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleVertices.Capacity() * mBytesPerFloat, mTriangleVertices, GLES20.GlStaticDraw); GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[1]); GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleColors.Capacity() * mBytesPerFloat, mTriangleColors, GLES20.GlStaticDraw); //Textures ----------------------------------------- //GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[2]); //GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleTextureUVMap.Capacity() * mBytesPerFloat, mTriangleTextureUVMap, GLES20.GlStaticDraw); GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[2]); // Vertex fileIn = context.Resources.OpenRawResource(Resource.Raw.OldHouse_objtexture) as Stream; m = new MemoryStream(); fileIn.CopyTo(m); size = m.Length; floatArray = new float[size / 4]; //objectSize = (int)(size / 4 / 3); System.Buffer.BlockCopy(m.ToArray(), 0, floatArray, 0, (int)size); vertexBuffer = FloatBuffer.Allocate((int)size / 4); // float array to vertexBuffer.Put(floatArray, 0, (int)size / 4); vertexBuffer.Flip(); //VBOManager.setSize(fileName, vertexBuffer.Capacity() / 4); //is size of vertex count = 1 vertex 4 float x,y,z, 1 GLES20.GlBufferData(GLES20.GlArrayBuffer, vertexBuffer.Capacity() * mBytesPerFloat, vertexBuffer, GLES20.GlStaticDraw); floatArray = null; vertexBuffer = null; fileIn.Close(); m.Close(); //ENDOF Textures ----------------------------------------- // GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[3]); /// GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleNormal.Capacity() * mBytesPerFloat, mTriangleNormal, GLES20.GlStaticDraw); /// Normales GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[3]); // Vertex fileIn = context.Resources.OpenRawResource(Resource.Raw.OldHouse_objnormal) as Stream; m = new MemoryStream(); fileIn.CopyTo(m); size = m.Length; floatArray = new float[size / 4]; //objectSize = (int)(size / 4 / 3); System.Buffer.BlockCopy(m.ToArray(), 0, floatArray, 0, (int)size); vertexBuffer = FloatBuffer.Allocate((int)size / 4); // float array to vertexBuffer.Put(floatArray, 0, (int)size / 4); vertexBuffer.Flip(); //VBOManager.setSize(fileName, vertexBuffer.Capacity() / 4); //is size of vertex count = 1 vertex 4 float x,y,z, 1 GLES20.GlBufferData(GLES20.GlArrayBuffer, vertexBuffer.Capacity() * mBytesPerFloat, vertexBuffer, GLES20.GlStaticDraw); floatArray = null; vertexBuffer = null; fileIn.Close(); m.Close(); GLES20.GlBindBuffer(GLES20.GlArrayBuffer, 0); //Load and setup texture GLES20.GlGenTextures(1, textureHandle, 0); //init 1 texture storage handle if (textureHandle[0] != 0) { //Android.Graphics cose class Matrix exists at both Android.Graphics and Android.OpenGL and this is only sample of using Android.Graphics.BitmapFactory.Options options = new Android.Graphics.BitmapFactory.Options(); options.InScaled = false; // No pre-scaling Android.Graphics.Bitmap bitmap = Android.Graphics.BitmapFactory.DecodeResource(context.Resources, Resource.Drawable.body, options); GLES20.GlBindTexture(GLES20.GlTexture2d, textureHandle[0]); GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureMinFilter, GLES20.GlNearest); GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureMagFilter, GLES20.GlNearest); GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureWrapS, GLES20.GlClampToEdge); GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureWrapT, GLES20.GlClampToEdge); GLUtils.TexImage2D(GLES20.GlTexture2d, 0, bitmap, 0); bitmap.Recycle(); } //Ask android to run RAM garbage cleaner System.GC.Collect(); //Setup OpenGL ES GLES20.GlClearColor(0.0f, 0.0f, 0.0f, 0.0f); GLES20.GlEnable(GLES20.GlDepthTest); //uncoment if needs enabled dpeth test // GLES20.GlEnable(2884); // GlCullFace == 2884 see OpenGL documentation to this constant value // GLES20.GlCullFace(GLES20.GlFront); // Position the eye behind the origin. float eyeX = 0.0f; float eyeY = 0.0f; float eyeZ = 7.5f; // We are looking toward the distance float lookX = 0.0f; float lookY = 0.0f; float lookZ = -7.0f; // Set our up vector. This is where our head would be pointing were we holding the camera. float upX = 0.0f; float upY = coord; float upZ = 0.0f; // Set the view matrix. This matrix can be said to represent the camera position. // NOTE: In OpenGL 1, a ModelView matrix is used, which is a combination of a model and // view matrix. In OpenGL 2, we can keep track of these matrices separately if we choose. Matrix.SetLookAtM(mViewMatrix, 0, eyeX, eyeY, eyeZ, lookX, lookY, lookZ, upX, upY, upZ); //all "attribute" variables is "triagles" VBO (arrays) items representation //a_Possition[0] <=> a_Color[0] <=> a_TextureCoord[0] <=> a_Normal[0] //a_Possition[1] <=> a_Color[1] <=> a_TextureCoord[1] <=> a_Normal[1] //... //a_Possition[n] <=> a_Color[n] <=> a_TextureCoord[n] <=> a_Normal[n] -- where "n" is object buffers length //-> HOW MANY faces in your object (model) in VBO -> how many times the vertex shader will be called by OpenGL string vertexShader = "uniform mat4 u_MVPMatrix; \n" // A constant representing the combined model/view/projection matrix. + "uniform vec4 u_LightPos; \n" // A constant representing the light source position + "attribute vec4 a_Position; \n" // Per-vertex position information we will pass in. (it means vec4[x,y,z,w] but we put only x,y,z at this sample + "attribute vec4 a_Color; \n" // Per-vertex color information we will pass in. + "varying vec4 v_Color; \n" // This will be passed into the fragment shader. + "attribute vec2 a_TextureCoord; \n" // Per-vertex texture UVMap information we will pass in. + "varying vec2 v_TextureCoord; \n" // This will be passed into the fragment shader. + "attribute vec3 a_Normal; \n" // Per-vertex normals information we will pass in. + "void main() \n" // The entry point for our vertex shader. + "{ \n" //light calculation section for fragment shader + " vec3 modelViewVertex = vec3(u_MVPMatrix * a_Position);\n" + " vec3 modelViewNormal = vec3(u_MVPMatrix * vec4(a_Normal, 0.0));\n" + " float distance = length(u_LightPos.xyz - modelViewVertex);\n" + " vec3 lightVector = normalize(u_LightPos.xyz - modelViewVertex);\n" + " float diffuse = max(dot(modelViewNormal, lightVector), 0.1);\n" + " diffuse = diffuse * (1.0 / (1.0 + (u_LightPos.w * distance * distance)));\n" + " v_Color = vec4(diffuse, diffuse, diffuse, diffuse);\n" //Pass the color with light aspect to fragment shader R G B A //+ " v_Color = vec4(a_Normal, 1.0);\n" //Test normals array loading + " v_TextureCoord = a_TextureCoord; \n" // Pass the texture coordinate through to the fragment shader. It will be interpolated across the triangle. + " gl_Position = u_MVPMatrix \n" // gl_Position is a special variable used to store the final position. + " * a_Position; \n" // Multiply the vertex by the matrix to get the final point in normalized screen coordinates. + "} \n"; string fragmentShader = "precision mediump float; \n" // Set the default precision to medium. We don't need as high of a // precision in the fragment shader. + "varying vec4 v_Color; \n" // This is the color from the vertex shader interpolated across the triangle per fragment. + "varying vec2 v_TextureCoord; \n" // This is the texture coordinate from the vertex shader interpolated across the triangle per fragment. + "uniform sampler2D u_Texture; \n" // This is the texture image handler + "void main() \n" // The entry point for our fragment shader. + "{ \n" + " gl_FragColor = texture2D(u_Texture, v_TextureCoord) * v_Color; \n" // Pass the color directly through the pipeline. //+ " gl_FragColor = v_Color; \n" // Pass the color directly through the pipeline. + "} \n"; int vertexShaderHandle = GLES20.GlCreateShader(GLES20.GlVertexShader); if (vertexShaderHandle != 0) { // Pass in the shader source. GLES20.GlShaderSource(vertexShaderHandle, vertexShader); // Compile the shader. GLES20.GlCompileShader(vertexShaderHandle); // Get the compilation status. int[] compileStatus = new int[1]; GLES20.GlGetShaderiv(vertexShaderHandle, GLES20.GlCompileStatus, compileStatus, 0); // If the compilation failed, delete the shader. if (compileStatus[0] == 0) { GLES20.GlDeleteShader(vertexShaderHandle); vertexShaderHandle = 0; } } if (vertexShaderHandle == 0) { throw new Exception("Error creating vertex shader."); } // Load in the fragment shader shader. int fragmentShaderHandle = GLES20.GlCreateShader(GLES20.GlFragmentShader); if (fragmentShaderHandle != 0) { // Pass in the shader source. GLES20.GlShaderSource(fragmentShaderHandle, fragmentShader); // Compile the shader. GLES20.GlCompileShader(fragmentShaderHandle); // Get the compilation status. int[] compileStatus = new int[1]; GLES20.GlGetShaderiv(fragmentShaderHandle, GLES20.GlCompileStatus, compileStatus, 0); // If the compilation failed, delete the shader. if (compileStatus[0] == 0) { GLES20.GlDeleteShader(fragmentShaderHandle); fragmentShaderHandle = 0; } } if (fragmentShaderHandle == 0) { throw new Exception("Error creating fragment shader."); } // Create a program object and store the handle to it. int programHandle = GLES20.GlCreateProgram(); if (programHandle != 0) { // Bind the vertex shader to the program. GLES20.GlAttachShader(programHandle, vertexShaderHandle); // Bind the fragment shader to the program. GLES20.GlAttachShader(programHandle, fragmentShaderHandle); // Bind attributes GLES20.GlBindAttribLocation(programHandle, 0, "a_Position"); GLES20.GlBindAttribLocation(programHandle, 1, "a_Color"); GLES20.GlBindAttribLocation(programHandle, 2, "a_TextureCoord"); GLES20.GlBindAttribLocation(programHandle, 3, "a_Normal"); // Link the two shaders together into a program. GLES20.GlLinkProgram(programHandle); // Get the link status. int[] linkStatus = new int[1]; GLES20.GlGetProgramiv(programHandle, GLES20.GlLinkStatus, linkStatus, 0); // If the link failed, delete the program. if (linkStatus[0] == 0) { GLES20.GlDeleteProgram(programHandle); programHandle = 0; } } if (programHandle == 0) { throw new Exception("Error creating program."); } // Set program handles. These will later be used to pass in values to the program. mMVPMatrixHandle = GLES20.GlGetUniformLocation(programHandle, "u_MVPMatrix"); mLightPos = GLES20.GlGetUniformLocation(programHandle, "u_LightPos"); mPositionHandle = GLES20.GlGetAttribLocation(programHandle, "a_Position"); mColorHandle = GLES20.GlGetAttribLocation(programHandle, "a_Color"); mTextureCoordHandle = GLES20.GlGetAttribLocation(programHandle, "a_TextureCoord"); mNormalHandle = GLES20.GlGetAttribLocation(programHandle, "a_Normal"); mTextureHandle = GLES20.GlGetUniformLocation(programHandle, "u_Texture"); // Tell OpenGL to use this program when rendering. GLES20.GlUseProgram(programHandle); }
public string Compile() { string result = string.Empty; string vertexShader = string.Empty; string fragmentShader = string.Empty; int resourceId = context.Resources.GetIdentifier(vertexShaderFile, "raw", context.PackageName); Stream fileStream = context.Resources.OpenRawResource(resourceId); StreamReader streamReader = new StreamReader(fileStream); string line = string.Empty; while ((line = streamReader.ReadLine()) != null) { vertexShader += line + "\n"; } resourceId = context.Resources.GetIdentifier(fragmentShaderFile, "raw", context.PackageName); fileStream = context.Resources.OpenRawResource(resourceId); streamReader = new StreamReader(fileStream); while ((line = streamReader.ReadLine()) != null) { fragmentShader += line + "\n"; } int vertexShaderHandle = GLES20.GlCreateShader(GLES20.GlVertexShader); if (vertexShaderHandle != 0) { // Pass in the shader source. GLES20.GlShaderSource(vertexShaderHandle, vertexShader); // Compile the shader. GLES20.GlCompileShader(vertexShaderHandle); // Get the compilation status. int[] compileStatus = new int[1]; GLES20.GlGetShaderiv(vertexShaderHandle, GLES20.GlCompileStatus, compileStatus, 0); // If the compilation failed, delete the shader. if (compileStatus[0] == 0) { result += "vertex shader error"; result += GLES20.GlGetProgramInfoLog(vertexShaderHandle); GLES20.GlDeleteShader(vertexShaderHandle); vertexShaderHandle = 0; } } // Load in the fragment shader shader. int fragmentShaderHandle = GLES20.GlCreateShader(GLES20.GlFragmentShader); if (fragmentShaderHandle != 0) { // Pass in the shader source. GLES20.GlShaderSource(fragmentShaderHandle, fragmentShader); // Compile the shader. GLES20.GlCompileShader(fragmentShaderHandle); // Get the compilation status. int[] compileStatus = new int[1]; GLES20.GlGetShaderiv(fragmentShaderHandle, GLES20.GlCompileStatus, compileStatus, 0); // If the compilation failed, delete the shader. if (compileStatus[0] == 0) { result += "fragment shader error"; result += GLES20.GlGetProgramInfoLog(fragmentShaderHandle); GLES20.GlDeleteShader(fragmentShaderHandle); fragmentShaderHandle = 0; return(result); } } // Create a program object and store the handle to it. programHandle = GLES20.GlCreateProgram(); if (programHandle != 0) { // Bind the vertex shader to the program. GLES20.GlAttachShader(programHandle, vertexShaderHandle); // Bind the fragment shader to the program. GLES20.GlAttachShader(programHandle, fragmentShaderHandle); // Bind attributes GLES20.GlBindAttribLocation(programHandle, 0, "a_Position"); GLES20.GlBindAttribLocation(programHandle, 1, "a_Color"); GLES20.GlBindAttribLocation(programHandle, 2, "a_TextureCoord"); GLES20.GlBindAttribLocation(programHandle, 3, "a_Normal"); // Link the two shaders together into a program. GLES20.GlLinkProgram(programHandle); // Get the link status. int[] linkStatus = new int[1]; GLES20.GlGetProgramiv(programHandle, GLES20.GlLinkStatus, linkStatus, 0); // If the link failed, delete the program. if (linkStatus[0] == 0) { result += "shader link error"; result += GLES20.GlGetProgramInfoLog(programHandle); GLES20.GlDeleteProgram(programHandle); programHandle = 0; return(result); } } // Set program handles. These will later be used to pass in values to the program. mMVPMatrixHandle = GLES20.GlGetUniformLocation(programHandle, "u_MVPMatrix"); mLightPos = GLES20.GlGetUniformLocation(programHandle, "u_LightPos"); mPositionHandle = GLES20.GlGetAttribLocation(programHandle, "a_Position"); mColorHandle = GLES20.GlGetAttribLocation(programHandle, "a_Color"); mTextureCoordHandle = GLES20.GlGetAttribLocation(programHandle, "a_TextureCoord"); mNormalHandle = GLES20.GlGetAttribLocation(programHandle, "a_Normal"); mTextureHandle = GLES20.GlGetUniformLocation(programHandle, "u_Texture"); return(result); }
public void OnSurfaceCreated(IGL10 gl, Javax.Microedition.Khronos.Egl.EGLConfig config) { mTriangle1Vertices = ByteBuffer.AllocateDirect(triangle1VerticesData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer(); mTriangle1Vertices.Put(triangle1VerticesData).Position(0); mTriangle1Vertices2 = ByteBuffer.AllocateDirect(triangle1VerticesData2.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer(); mTriangle1Vertices2.Put(triangle1VerticesData2).Position(0); GLES20.GlClearColor(1.0f, 1.0f, 1.0f, 1.0f); //GLES20.GlEnable(GLES20.GlDepthTest); //GLES20.GlEnable(2884); //GlCullFace == 2884 GLES20.GlCullFace(GLES20.GlFrontAndBack); // Position the eye behind the origin. float eyeX = 0.0f; float eyeY = 0.0f; float eyeZ = 1.5f; // We are looking toward the distance float lookX = 0.0f; float lookY = 0.0f; float lookZ = -10f; // Set our up vector. This is where our head would be pointing were we holding the camera. float upX = 0.0f; float upY = 1.0f; float upZ = -5.0f; // Set the view matrix. This matrix can be said to represent the camera position. // NOTE: In OpenGL 1, a ModelView matrix is used, which is a combination of a model and // view matrix. In OpenGL 2, we can keep track of these matrices separately if we choose. Matrix.SetLookAtM(mViewMatrix, 0, eyeX, eyeY, eyeZ, lookX, lookY, lookZ, upX, upY, upZ); string vertexShader = "uniform mat4 u_MVPMatrix; \n" // A constant representing the combined model/view/projection matrix. + "attribute vec4 a_Position; \n" // Per-vertex position information we will pass in. + "attribute vec4 a_Color; \n" // Per-vertex color information we will pass in. + "varying vec4 v_Color; \n" // This will be passed into the fragment shader. + "void main() \n" // The entry point for our vertex shader. + "{ \n" + " v_Color = a_Color; \n" // Pass the color through to the fragment shader. It will be interpolated across the triangle. + " gl_Position = u_MVPMatrix \n" // gl_Position is a special variable used to store the final position. + " * a_Position; \n" // Multiply the vertex by the matrix to get the final point in normalized screen coordinates. + "} \n"; string fragmentShader = "precision mediump float; \n" // Set the default precision to medium. We don't need as high of a // precision in the fragment shader. + "varying vec4 v_Color; \n" // This is the color from the vertex shader interpolated across the triangle per fragment. + "void main() \n" // The entry point for our fragment shader. + "{ \n" + " gl_FragColor = v_Color; \n" // Pass the color directly through the pipeline. + "} \n"; int vertexShaderHandle = GLES20.GlCreateShader(GLES20.GlVertexShader); if (vertexShaderHandle != 0) { // Pass in the shader source. GLES20.GlShaderSource(vertexShaderHandle, vertexShader); // Compile the shader. GLES20.GlCompileShader(vertexShaderHandle); // Get the compilation status. int[] compileStatus = new int[1]; GLES20.GlGetShaderiv(vertexShaderHandle, GLES20.GlCompileStatus, compileStatus, 0); // If the compilation failed, delete the shader. if (compileStatus[0] == 0) { GLES20.GlDeleteShader(vertexShaderHandle); vertexShaderHandle = 0; } } if (vertexShaderHandle == 0) { throw new Exception("Error creating vertex shader."); } // Load in the fragment shader shader. int fragmentShaderHandle = GLES20.GlCreateShader(GLES20.GlFragmentShader); if (fragmentShaderHandle != 0) { // Pass in the shader source. GLES20.GlShaderSource(fragmentShaderHandle, fragmentShader); // Compile the shader. GLES20.GlCompileShader(fragmentShaderHandle); // Get the compilation status. int[] compileStatus = new int[1]; GLES20.GlGetShaderiv(fragmentShaderHandle, GLES20.GlCompileStatus, compileStatus, 0); // If the compilation failed, delete the shader. if (compileStatus[0] == 0) { GLES20.GlDeleteShader(fragmentShaderHandle); fragmentShaderHandle = 0; } } if (fragmentShaderHandle == 0) { throw new Exception("Error creating fragment shader."); } // Create a program object and store the handle to it. int programHandle = GLES20.GlCreateProgram(); if (programHandle != 0) { // Bind the vertex shader to the program. GLES20.GlAttachShader(programHandle, vertexShaderHandle); // Bind the fragment shader to the program. GLES20.GlAttachShader(programHandle, fragmentShaderHandle); // Bind attributes GLES20.GlBindAttribLocation(programHandle, 0, "a_Position"); GLES20.GlBindAttribLocation(programHandle, 1, "a_Color"); // Link the two shaders together into a program. GLES20.GlLinkProgram(programHandle); // Get the link status. int[] linkStatus = new int[1]; GLES20.GlGetProgramiv(programHandle, GLES20.GlLinkStatus, linkStatus, 0); // If the link failed, delete the program. if (linkStatus[0] == 0) { GLES20.GlDeleteProgram(programHandle); programHandle = 0; } } if (programHandle == 0) { throw new Exception("Error creating program."); } // Set program handles. These will later be used to pass in values to the program. mMVPMatrixHandle = GLES20.GlGetUniformLocation(programHandle, "u_MVPMatrix"); mPositionHandle = GLES20.GlGetAttribLocation(programHandle, "a_Position"); mColorHandle = GLES20.GlGetAttribLocation(programHandle, "a_Color"); // Tell OpenGL to use this program when rendering. GLES20.GlUseProgram(programHandle); }
public void OnSurfaceCreated(IGL10 gl, Javax.Microedition.Khronos.Egl.EGLConfig config) { const float coord = 1.0f; ObjParser model3D = new ObjParser(); List <byte[]> test1 = model3D.ParsedObject(context, "buggy"); float[] vertexArray = new float[test1[0].Length / 4]; System.Buffer.BlockCopy(test1[0], 0, vertexArray, 0, (int)test1[0].Length); modelVerticesData = vertexArray; FloatBuffer mTriangleVertices = ByteBuffer.AllocateDirect(modelVerticesData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer(); mTriangleVertices.Put(modelVerticesData).Flip(); // Cube colors // R, G, B, A float[] modelColorsData = { 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f }; FloatBuffer mTriangleColors = ByteBuffer.AllocateDirect(modelColorsData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer(); mTriangleColors.Put(modelColorsData).Flip(); float[] textureUVMapArray = new float[test1[1].Length / 4]; System.Buffer.BlockCopy(test1[1], 0, textureUVMapArray, 0, (int)test1[1].Length); modelTextureUVMapData = textureUVMapArray; FloatBuffer mTriangleTextureUVMap = ByteBuffer.AllocateDirect(modelTextureUVMapData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer(); mTriangleTextureUVMap.Put(modelTextureUVMapData).Flip(); //Data buffers to VBO GLES20.GlGenBuffers(3, VBOBuffers, 0); //2 buffers for vertices, texture and colors GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[0]); GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleVertices.Capacity() * mBytesPerFloat, mTriangleVertices, GLES20.GlStaticDraw); GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[1]); GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleColors.Capacity() * mBytesPerFloat, mTriangleColors, GLES20.GlStaticDraw); GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[2]); GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleTextureUVMap.Capacity() * mBytesPerFloat, mTriangleTextureUVMap, GLES20.GlStaticDraw); GLES20.GlBindBuffer(GLES20.GlArrayBuffer, 0); //Load and setup texture GLES20.GlGenTextures(1, textureHandle, 0); //init 1 texture storage handle if (textureHandle[0] != 0) { //Android.Graphics cose class Matrix exists at both Android.Graphics and Android.OpenGL and this is only sample of using Android.Graphics.BitmapFactory.Options options = new Android.Graphics.BitmapFactory.Options(); options.InScaled = false; // No pre-scaling Android.Graphics.Bitmap bitmap = Android.Graphics.BitmapFactory.DecodeResource(context.Resources, Resource.Drawable.iam, options); GLES20.GlBindTexture(GLES20.GlTexture2d, textureHandle[0]); GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureMinFilter, GLES20.GlNearest); GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureMagFilter, GLES20.GlNearest); GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureWrapS, GLES20.GlClampToEdge); GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureWrapT, GLES20.GlClampToEdge); GLUtils.TexImage2D(GLES20.GlTexture2d, 0, bitmap, 0); bitmap.Recycle(); } //Ask android to run RAM garbage cleaner System.GC.Collect(); //Setup OpenGL ES GLES20.GlClearColor(coord, coord, coord, coord); // GLES20.GlEnable(GLES20.GlDepthTest); //uncoment if needs enabled dpeth test GLES20.GlEnable(2884); // GlCullFace == 2884 see OpenGL documentation to this constant value GLES20.GlCullFace(GLES20.GlBack); // Position the eye behind the origin. float eyeX = 0.0f; float eyeY = 0.0f; float eyeZ = 4.5f; // We are looking toward the distance float lookX = 0.0f; float lookY = 0.0f; float lookZ = -5.0f; // Set our up vector. This is where our head would be pointing were we holding the camera. float upX = 0.0f; float upY = coord; float upZ = 0.0f; // Set the view matrix. This matrix can be said to represent the camera position. // NOTE: In OpenGL 1, a ModelView matrix is used, which is a combination of a model and // view matrix. In OpenGL 2, we can keep track of these matrices separately if we choose. Matrix.SetLookAtM(mViewMatrix, 0, eyeX, eyeY, eyeZ, lookX, lookY, lookZ, upX, upY, upZ); string vertexShader = "uniform mat4 u_MVPMatrix; \n" // A constant representing the combined model/view/projection matrix. + "attribute vec4 a_Position; \n" // Per-vertex position information we will pass in. + "attribute vec4 a_Color; \n" // Per-vertex color information we will pass in. + "varying vec4 v_Color; \n" // This will be passed into the fragment shader. + "attribute vec2 a_TextureCoord; \n" + "varying vec2 v_TextureCoord; \n" + "void main() \n" // The entry point for our vertex shader. + "{ \n" + " v_TextureCoord = a_TextureCoord; \n" // Pass the color through to the fragment shader. It will be interpolated across the triangle. + " v_Color = a_Color; \n" // Pass the color through to the fragment shader. It will be interpolated across the triangle. + " gl_Position = u_MVPMatrix \n" // gl_Position is a special variable used to store the final position. + " * a_Position; \n" // Multiply the vertex by the matrix to get the final point in normalized screen coordinates. + "} \n"; string fragmentShader = "precision mediump float; \n" // Set the default precision to medium. We don't need as high of a // precision in the fragment shader. + "varying vec4 v_Color; \n" // This is the color from the vertex shader interpolated across the triangle per fragment. + "varying vec2 v_TextureCoord; \n" + "uniform sampler2D u_Texture; \n" + "void main() \n" // The entry point for our fragment shader. + "{ \n" + " gl_FragColor = texture2D(u_Texture, v_TextureCoord); \n" // Pass the color directly through the pipeline. + "} \n"; vertexShader = string.Empty; fragmentShader = string.Empty; int resourceId = context.Resources.GetIdentifier("vertexshadervladimir1", "raw", context.PackageName); Stream fileStream = context.Resources.OpenRawResource(resourceId); StreamReader streamReader = new StreamReader(fileStream); string line = string.Empty; while ((line = streamReader.ReadLine()) != null) { vertexShader += line + "\n"; } resourceId = context.Resources.GetIdentifier("fragmentshadervladimir1", "raw", context.PackageName); fileStream = context.Resources.OpenRawResource(resourceId); streamReader = new StreamReader(fileStream); while ((line = streamReader.ReadLine()) != null) { fragmentShader += line + "\n"; } int vertexShaderHandle = GLES20.GlCreateShader(GLES20.GlVertexShader); if (vertexShaderHandle != 0) { // Pass in the shader source. GLES20.GlShaderSource(vertexShaderHandle, vertexShader); // Compile the shader. GLES20.GlCompileShader(vertexShaderHandle); // Get the compilation status. int[] compileStatus = new int[1]; GLES20.GlGetShaderiv(vertexShaderHandle, GLES20.GlCompileStatus, compileStatus, 0); // If the compilation failed, delete the shader. if (compileStatus[0] == 0) { GLES20.GlDeleteShader(vertexShaderHandle); vertexShaderHandle = 0; } } if (vertexShaderHandle == 0) { throw new Exception("Error creating vertex shader."); } // Load in the fragment shader shader. int fragmentShaderHandle = GLES20.GlCreateShader(GLES20.GlFragmentShader); if (fragmentShaderHandle != 0) { // Pass in the shader source. GLES20.GlShaderSource(fragmentShaderHandle, fragmentShader); // Compile the shader. GLES20.GlCompileShader(fragmentShaderHandle); // Get the compilation status. int[] compileStatus = new int[1]; GLES20.GlGetShaderiv(fragmentShaderHandle, GLES20.GlCompileStatus, compileStatus, 0); // If the compilation failed, delete the shader. if (compileStatus[0] == 0) { GLES20.GlDeleteShader(fragmentShaderHandle); fragmentShaderHandle = 0; } } if (fragmentShaderHandle == 0) { throw new Exception("Error creating fragment shader."); } // Create a program object and store the handle to it. int programHandle = GLES20.GlCreateProgram(); if (programHandle != 0) { // Bind the vertex shader to the program. GLES20.GlAttachShader(programHandle, vertexShaderHandle); // Bind the fragment shader to the program. GLES20.GlAttachShader(programHandle, fragmentShaderHandle); // Bind attributes GLES20.GlBindAttribLocation(programHandle, 0, "a_Position"); GLES20.GlBindAttribLocation(programHandle, 1, "a_Color"); GLES20.GlBindAttribLocation(programHandle, 2, "a_TextureCoord"); // Link the two shaders together into a program. GLES20.GlLinkProgram(programHandle); // Get the link status. int[] linkStatus = new int[1]; GLES20.GlGetProgramiv(programHandle, GLES20.GlLinkStatus, linkStatus, 0); // If the link failed, delete the program. if (linkStatus[0] == 0) { GLES20.GlDeleteProgram(programHandle); programHandle = 0; } } if (programHandle == 0) { throw new Exception("Error creating program."); } // Set program handles. These will later be used to pass in values to the program. mMVPMatrixHandle = GLES20.GlGetUniformLocation(programHandle, "u_MVPMatrix"); mPositionHandle = GLES20.GlGetAttribLocation(programHandle, "a_Position"); mColorHandle = GLES20.GlGetAttribLocation(programHandle, "a_Color"); mTextureCoordHandle = GLES20.GlGetAttribLocation(programHandle, "a_TextureCoord"); mTextureHandle = GLES20.GlGetUniformLocation(programHandle, "u_Texture"); // Tell OpenGL to use this program when rendering. GLES20.GlUseProgram(programHandle); }
void GLSurfaceView.IRenderer.OnSurfaceCreated(IGL10 gl, Javax.Microedition.Khronos.Egl.EGLConfig config) { //Set the background clear color to gray GLES20.GlClearColor(0.5f, 0.5f, 0.5f, 0.5f); //Position the eye behind the origin. float eyeX = 0.0f; float eyeY = 0.0f; float eyeZ = 0.0f; //We are looking toward the distance. float lookX = 0.0f; float lookY = 0.0f; float lookZ = -5.0f; //Set our up vector,This is where our head wold be pointing were we holding the camera float upX = 0.0f; float upY = 1.0f; float upZ = 0.0f; Matrix.SetLookAtM(mViewMatrix, 0, eyeX, eyeY, eyeZ, lookX, lookY, lookZ, upX, upY, upZ); string vertexShader = "uniform mat4 u_MVPMatrix; \n" + "attribute vec4 a_Position;\n" + "attribute vec4 a_Color;\n" + "varying vec4 v_Color; \n" + "void main() \n" + "{ \n" + "v_Color = a_Color; \n" + "gl_Position = u_MVPMatrix \n" + "*a_Position; \n" + "} \n"; string fragmentShader = "precision mediump float; \n" + "varying vec4 v_Color; \n" + "void main() \n" + "{ \n" + "gl_FragColor=v_Color; \n" + "}"; int vertexShaderHandle = GLES20.GlCreateShader(GLES20.GlVertexShader); if (vertexShaderHandle != 0) { //Pass in the shader source. GLES20.GlShaderSource(vertexShaderHandle, vertexShader); //Compile the shader GLES20.GlCompileShader(vertexShaderHandle); int[] compileStatus = new int[1]; GLES20.GlGetShaderiv(vertexShaderHandle, GLES20.GlCompileStatus, compileStatus, 0); //If the compilation failed,delete the shader if (compileStatus[0] == 0) { GLES20.GlDeleteShader(vertexShaderHandle); vertexShaderHandle = 0; } } if (vertexShaderHandle == 0) { throw new ArgumentException("Error creating vertex shader."); } //Load in the fragment shader shader. int fragmentShaderHandle = GLES20.GlCreateShader(GLES20.GlFragmentShader); if (fragmentShaderHandle != 0) { //Pass in the shader source. GLES20.GlShaderSource(fragmentShaderHandle, fragmentShader); //Compile the shader. GLES20.GlCompileShader(fragmentShaderHandle); int[] compileStatus = new int[1]; GLES20.GlGetShaderiv(fragmentShaderHandle, GLES20.GlCompileStatus, compileStatus, 0); if (compileStatus[0] == 0) { GLES20.GlDeleteShader(fragmentShaderHandle); fragmentShaderHandle = 0; } } if (fragmentShaderHandle == 0) { throw new ArgumentException("Error createing fragment shader"); } //Create a program object and store the handle to it. int programHandle = GLES20.GlCreateProgram(); if (programHandle != 0) { //Bind the vertex shader to the program. GLES20.GlAttachShader(programHandle, vertexShaderHandle); //Bind the fragment shader to the program. GLES20.GlAttachShader(programHandle, fragmentShaderHandle); //Bind attributes. GLES20.GlBindAttribLocation(programHandle, 0, "a_Position"); GLES20.GlBindAttribLocation(programHandle, 1, "a_Color"); //Link the two shaders together into a program. GLES20.GlLinkProgram(programHandle); //Get the link status. int[] linkStatus = new int[1]; GLES20.GlGetProgramiv(programHandle, GLES20.GlLinkStatus, linkStatus, 0); //If the link failed ,delete the program if (linkStatus[0] == 0) { GLES20.GlDeleteProgram(programHandle); programHandle = 0; } } if (programHandle == 0) { throw new ArgumentException("Error creating program."); } //Set program handles. These will later be used to pass in values mMVPMatrixHandle = GLES20.GlGetUniformLocation(programHandle, "u_MVPMatrix"); mPositionHandle = GLES20.GlGetAttribLocation(programHandle, "a_Position"); mColorHandle = GLES20.GlGetAttribLocation(programHandle, "a_Color"); //Tell OpenGL to use this program when rendering. GLES20.GlUseProgram(programHandle); }