コード例 #1
0
        public void ConstructorTest2()
        {
            Accord.Math.Tools.SetupGenerator(0);

            var function = new NonlinearObjectiveFunction(2,
                                                          function: x => x[0] * x[1],
                                                          gradient: x => new[] { x[1], x[0] });

            NonlinearConstraint[] constraints =
            {
                new NonlinearConstraint(function,
                                        function: x => 1.0 - x[0] * x[0] - x[1] * x[1],
                                        gradient: x => new [] { -2 * x[0],         -2 * x[1] }),
                new NonlinearConstraint(function,
                                        function: x => x[0],
                                        gradient: x => new [] { 1.0,                     0.0 }),
            };

            var target = new ConjugateGradient(2);
            AugmentedLagrangian solver = new AugmentedLagrangian(target, function, constraints);

            Assert.IsTrue(solver.Minimize());
            double minimum = solver.Value;

            double[] solution = solver.Solution;

            double sqrthalf = Math.Sqrt(0.5);

            Assert.AreEqual(-0.5, minimum, 1e-5);
            Assert.AreEqual(sqrthalf, solution[0], 1e-5);
            Assert.AreEqual(-sqrthalf, solution[1], 1e-5);

            double expectedMinimum = function.Function(solver.Solution);

            Assert.AreEqual(expectedMinimum, minimum);
        }
コード例 #2
0
        public void ConstructorTest3()
        {
            // minimize f(x) = x*y*z,
            // s.t.
            //
            //    1 - x² - 2y² - 3z² > 0
            //    x > 0,
            //    y > 0
            //

            // Easy three dimensional minimization in ellipsoid.
            var function = new NonlinearObjectiveFunction(3,
                                                          function: x => x[0] * x[1] * x[2],
                                                          gradient: x => new[] { x[1] * x[2], x[0] * x[2], x[0] * x[1] });

            NonlinearConstraint[] constraints =
            {
                new NonlinearConstraint(3,
                                        function: x => 1.0 - x[0] * x[0] - 2.0 * x[1] * x[1] - 3.0 * x[2] * x[2],
                                        gradient: x => new[] { -2.0 * x[0],                               -4.0 * x[1], -6.0 * x[2] }),
                new NonlinearConstraint(3,
                                        function: x => x[0],
                                        gradient: x => new[] { 1.0,                                                 0,           0 }),
                new NonlinearConstraint(3,
                                        function: x => x[1],
                                        gradient: x => new[] { 0,                                                 1.0,           0 }),
                new NonlinearConstraint(3,
                                        function: x => - x[2],
                                        gradient: x => new[] { 0,                                                   0,        -1.0 }),
            };

            for (int i = 0; i < constraints.Length; i++)
            {
                Assert.AreEqual(ConstraintType.GreaterThanOrEqualTo, constraints[i].ShouldBe);
                Assert.AreEqual(0, constraints[i].Value);
            }

            var inner = new BroydenFletcherGoldfarbShanno(3);

            inner.LineSearch  = LineSearch.BacktrackingArmijo;
            inner.Corrections = 10;

            var solver = new AugmentedLagrangian(inner, function, constraints);

            Assert.AreEqual(inner, solver.Optimizer);

            Assert.IsTrue(solver.Minimize());
            double minimum = solver.Value;

            double[] solution = solver.Solution;

            double[] expected =
            {
                1.0 / Math.Sqrt(3.0), 1.0 / Math.Sqrt(6.0), -1.0 / 3.0
            };


            for (int i = 0; i < expected.Length; i++)
            {
                Assert.AreEqual(expected[i], solver.Solution[i], 1e-3);
            }
            Assert.AreEqual(-0.078567420132031968, minimum, 1e-4);

            double expectedMinimum = function.Function(solver.Solution);

            Assert.AreEqual(expectedMinimum, minimum);
        }
コード例 #3
0
        private static void test2(IGradientOptimizationMethod inner)
        {
            // maximize 2x + 3y, s.t. 2x² + 2y² <= 50
            //
            // http://www.wolframalpha.com/input/?i=max+2x+%2B+3y%2C+s.t.+2x%C2%B2+%2B+2y%C2%B2+%3C%3D+50

            // Max x' * c
            //  x

            // s.t. x' * A * x <= k
            //      x' * i     = 1
            // lower_bound < x < upper_bound

            double[] c = { 2, 3 };
            double[,] A = { { 2, 0 }, { 0, 2 } };
            double k = 50;

            // Create the objective function
            var objective = new NonlinearObjectiveFunction(2,
                                                           function: (x) => x.InnerProduct(c),
                                                           gradient: (x) => c
                                                           );

            // Test objective
            for (int i = 0; i < 10; i++)
            {
                for (int j = 0; j < 10; j++)
                {
                    double expected = i * 2 + j * 3;
                    double actual   = objective.Function(new double[] { i, j });
                    Assert.AreEqual(expected, actual);
                }
            }


            // Create the optimization constraints
            var constraints = new List <NonlinearConstraint>();

            constraints.Add(new QuadraticConstraint(objective,
                                                    quadraticTerms: A,
                                                    shouldBe: ConstraintType.LesserThanOrEqualTo, value: k
                                                    ));


            // Test first constraint
            for (int i = 0; i < 10; i++)
            {
                for (int j = 0; j < 10; j++)
                {
                    var input = new double[] { i, j };

                    double expected = i * (2 * i + 0 * j) + j * (0 * i + 2 * j);
                    double actual   = constraints[0].Function(input);
                    Assert.AreEqual(expected, actual);
                }
            }


            // Create the solver algorithm
            AugmentedLagrangian solver =
                new AugmentedLagrangian(inner, objective, constraints);

            Assert.AreEqual(inner, solver.Optimizer);

            Assert.IsTrue(solver.Maximize());
            double maxValue = solver.Value;

            Assert.AreEqual(18.02, maxValue, 1e-2);
            Assert.AreEqual(2.77, solver.Solution[0], 1e-2);
            Assert.AreEqual(4.16, solver.Solution[1], 1e-2);
        }
コード例 #4
0
        private static void test1(IGradientOptimizationMethod inner, double tol)
        {
            // maximize 2x + 3y, s.t. 2x² + 2y² <= 50 and x+y = 1

            // Max x' * c
            //  x

            // s.t. x' * A * x <= k
            //      x' * i     = 1
            // lower_bound < x < upper_bound

            double[] c = { 2, 3 };
            double[,] A = { { 2, 0 }, { 0, 2 } };
            double k = 50;

            // Create the objective function
            var objective = new NonlinearObjectiveFunction(2,
                                                           function: (x) => x.InnerProduct(c),
                                                           gradient: (x) => c
                                                           );

            // Test objective
            for (int i = 0; i < 10; i++)
            {
                for (int j = 0; j < 10; j++)
                {
                    double expected = i * 2 + j * 3;
                    double actual   = objective.Function(new double[] { i, j });
                    Assert.AreEqual(expected, actual);
                }
            }


            // Create the optimization constraints
            var constraints = new List <NonlinearConstraint>();

            constraints.Add(new QuadraticConstraint(objective,
                                                    quadraticTerms: A,
                                                    shouldBe: ConstraintType.LesserThanOrEqualTo, value: k
                                                    ));

            constraints.Add(new NonlinearConstraint(objective,
                                                    function: (x) => x.Sum(),
                                                    gradient: (x) => new[] { 1.0, 1.0 },
                                                    shouldBe: ConstraintType.EqualTo, value: 1,
                                                    withinTolerance: 1e-10
                                                    ));


            // Test first constraint
            for (int i = 0; i < 10; i++)
            {
                for (int j = 0; j < 10; j++)
                {
                    double expected = i * (2 * i + 0 * j) + j * (0 * i + 2 * j);
                    double actual   = constraints[0].Function(new double[] { i, j });
                    Assert.AreEqual(expected, actual);
                }
            }


            // Test second constraint
            for (int i = 0; i < 10; i++)
            {
                for (int j = 0; j < 10; j++)
                {
                    double expected = i + j;
                    double actual   = constraints[1].Function(new double[] { i, j });
                    Assert.AreEqual(expected, actual);
                }
            }



            AugmentedLagrangian solver =
                new AugmentedLagrangian(inner, objective, constraints);

            Assert.AreEqual(inner, solver.Optimizer);

            Assert.IsTrue(solver.Maximize());
            double maxValue = solver.Value;

            Assert.AreEqual(6, maxValue, tol);
            Assert.AreEqual(-3, solver.Solution[0], tol);
            Assert.AreEqual(4, solver.Solution[1], tol);
        }
コード例 #5
0
        public void AugmentedLagrangianSolverConstructorTest5()
        {
            // Suppose we would like to minimize the following function:
            //
            //    f(x,y) = min 100(y-x²)²+(1-x)²
            //
            // Subject to the constraints
            //
            //    x >= 0  (x must be positive)
            //    y >= 0  (y must be positive)
            //

            double x = 0, y = 0;


            // First, we create our objective function
            var f = new NonlinearObjectiveFunction(

                // This is the objective function:  f(x,y) = min 100(y-x²)²+(1-x)²
                function: () => 100 * Math.Pow(y - x * x, 2) + Math.Pow(1 - x, 2),

                // The gradient vector:
                gradient: () => new[]
            {
                2 * (200 * Math.Pow(x, 3) - 200 * x * y + x - 1),     // df/dx = 2(200x³-200xy+x-1)
                200 * (y - x * x)                                     // df/dy = 200(y-x²)
            }

                );


            // Now we can start stating the constraints
            var constraints = new List <NonlinearConstraint>();

            // Add the non-negativity constraint for x
            constraints.Add(new NonlinearConstraint(f,

                                                    // 1st constraint: x should be greater than or equal to 0
                                                    function: () => x, shouldBe: ConstraintType.GreaterThanOrEqualTo, value: 0,

                                                    gradient: () => new[] { 1.0, 0.0 }
                                                    ));

            // Add the non-negativity constraint for y
            constraints.Add(new NonlinearConstraint(f,

                                                    // 2nd constraint: y should be greater than or equal to 0
                                                    function: () => y, shouldBe: ConstraintType.GreaterThanOrEqualTo, value: 0,

                                                    gradient: () => new[] { 0.0, 1.0 }
                                                    ));


            // Finally, we create the non-linear programming solver
            var solver = new AugmentedLagrangian(f, constraints);

            // And attempt to solve the problem
            Assert.IsTrue(solver.Minimize());
            double minValue = solver.Value;

            Assert.AreEqual(0, minValue, 1e-10);
            Assert.AreEqual(1, solver.Solution[0], 1e-6);
            Assert.AreEqual(1, solver.Solution[1], 1e-6);

            Assert.IsFalse(Double.IsNaN(minValue));
            Assert.IsFalse(Double.IsNaN(solver.Solution[0]));
            Assert.IsFalse(Double.IsNaN(solver.Solution[1]));
        }
コード例 #6
0
        public void AugmentedLagrangianSolverConstructorTest4()
        {
            // min x*y+ y*z
            //
            // s.t.  x^2 - y^2 + z^2 - 2  >= 0
            //       x^2 + y^2 + z^2 - 10 <= 0
            //       x   + y               = 1
            //

            double x = 0, y = 0, z = 0;

            var f = new NonlinearObjectiveFunction(

                function: () => x * y + y * z,

                gradient: () => new[]
            {
                y,         // df/dx
                x + z,     // df/dy
                y,         // df/dz
            }

                );


            var constraints = new List <NonlinearConstraint>();

            constraints.Add(new NonlinearConstraint(f,

                                                    function: () => x * x - y * y + z * z,
                                                    gradient: () => new[] { 2 * x, -2 * y, 2 * z },

                                                    shouldBe: ConstraintType.GreaterThanOrEqualTo, value: 2
                                                    ));

            constraints.Add(new NonlinearConstraint(f,

                                                    function: () => x * x + y * y + z * z,
                                                    gradient: () => new[] { 2 * x, 2 * y, 2 * z },

                                                    shouldBe: ConstraintType.LesserThanOrEqualTo, value: 10
                                                    ));

            constraints.Add(new NonlinearConstraint(f,

                                                    function: () => x + y,
                                                    gradient: () => new[] { 1.0, 1.0, 0.0 },

                                                    shouldBe: ConstraintType.EqualTo, value: 1
                                                    )
            {
                Tolerance = 1e-5
            });

            var solver = new AugmentedLagrangian(f, constraints);

            solver.Solution[0] = 1;
            solver.Solution[1] = 1;
            solver.Solution[2] = 1;

            Assert.IsTrue(solver.Minimize());
            double minValue = solver.Value;

            Assert.AreEqual(1, solver.Solution[0] + solver.Solution[1], 1e-4);

            Assert.IsFalse(Double.IsNaN(minValue));
            Assert.IsFalse(Double.IsNaN(solver.Solution[0]));
            Assert.IsFalse(Double.IsNaN(solver.Solution[1]));
            Assert.IsFalse(Double.IsNaN(solver.Solution[2]));
        }
コード例 #7
0
        public void constructorTest5()
        {
            // AugmentedLagrangian with NonlinearConstraints
            // have a Gradient NullReferenceException issue
            // https://github.com/accord-net/framework/issues/177

            // Easy three dimensional minimization in ellipsoid.
            var function = new NonlinearObjectiveFunction(3,
                                                          function: x => x[0] * x[1] * x[2],
                                                          gradient: x => new[] { x[1] * x[2], x[0] * x[2], x[0] * x[1] });

            NonlinearConstraint[] constraints =
            {
                new NonlinearConstraint(function,
                                        constraint: x => (1.0 - x[0] * x[0] - 2.0 * x[1] * x[1] - 3.0 * x[2] * x[2]) >= 0,
                                        gradient: x => new[] { -2.0 * x[0],                                        -4.0 * x[1], -6.0 * x[2] }),
                new NonlinearConstraint(function,
                                        constraint: x => x[0] >= 0,
                                        gradient: x => new[] { 1.0,                                                          0,           0 }),
                new NonlinearConstraint(function,
                                        constraint: x => x[1] >= 0,
                                        gradient: x => new[] { 0,                                                          1.0,           0 }),
                new NonlinearConstraint(function,
                                        constraint: x => - x[2] >= 0,
                                        gradient: x => new[] { 0,                                                            0,        -1.0 }),
            };

            for (int i = 0; i < constraints.Length; i++)
            {
                Assert.AreEqual(ConstraintType.GreaterThanOrEqualTo, constraints[i].ShouldBe);
                Assert.AreEqual(0, constraints[i].Value);
            }

            var inner = new BroydenFletcherGoldfarbShanno(3);

            inner.LineSearch  = LineSearch.BacktrackingArmijo;
            inner.Corrections = 10;

            var solver = new AugmentedLagrangian(inner, function, constraints);

            Assert.AreEqual(inner, solver.Optimizer);

            Assert.IsTrue(solver.Minimize());
            double minimum = solver.Value;

            double[] solution = solver.Solution;

            double[] expected =
            {
                1.0 / Math.Sqrt(3.0), 1.0 / Math.Sqrt(6.0), -1.0 / 3.0
            };


            for (int i = 0; i < expected.Length; i++)
            {
                Assert.AreEqual(expected[i], solver.Solution[i], 1e-3);
            }
            Assert.AreEqual(-0.078567420132031968, minimum, 1e-4);

            double expectedMinimum = function.Function(solver.Solution);

            Assert.AreEqual(expectedMinimum, minimum);
        }
コード例 #8
0
        public void AugmentedLagrangianSolverConstructorTest5()
        {
            #region doc_lambda
            // Suppose we would like to minimize the following function:
            //
            //    f(x,y) = min 100(y-x²)²+(1-x)²
            //
            // Subject to the constraints
            //
            //    x >= 0  (x must be positive)
            //    y >= 0  (y must be positive)
            //

            // First, let's declare some symbolic variables
            double x = 0, y = 0; // (values do not matter)

            // Now, we create an objective function
            var f = new NonlinearObjectiveFunction(

                // This is the objective function:  f(x,y) = min 100(y-x²)²+(1-x)²
                function: () => 100 * Math.Pow(y - x * x, 2) + Math.Pow(1 - x, 2),

                // And this is the vector gradient for the same function:
                gradient: () => new[]
            {
                2 * (200 * Math.Pow(x, 3) - 200 * x * y + x - 1),     // df/dx = 2(200x³-200xy+x-1)
                200 * (y - x * x)                                     // df/dy = 200(y-x²)
            }
                );

            // Now we can start stating the constraints
            var constraints = new List <NonlinearConstraint>()
            {
                // Add the non-negativity constraint for x
                new NonlinearConstraint(f,
                                        // 1st constraint: x should be greater than or equal to 0
                                        function: () => x,
                                        shouldBe: ConstraintType.GreaterThanOrEqualTo,
                                        value: 0,
                                        gradient: () => new[] { 1.0, 0.0 }
                                        ),

                // Add the non-negativity constraint for y
                new NonlinearConstraint(f,
                                        // 2nd constraint: y should be greater than or equal to 0
                                        function: () => y,
                                        shouldBe: ConstraintType.GreaterThanOrEqualTo,
                                        value: 0,
                                        gradient: () => new[] { 0.0, 1.0 }
                                        )
            };

            // Finally, we create the non-linear programming solver
            var solver = new AugmentedLagrangian(f, constraints);

            // And attempt to find a minimum
            bool success = solver.Minimize();

            // The solution found was { 1, 1 }
            double[] solution = solver.Solution;

            // with the minimum value zero.
            double minValue = solver.Value;
            #endregion

            Assert.IsTrue(success);
            Assert.AreEqual(0, minValue, 1e-10);
            Assert.AreEqual(1, solver.Solution[0], 1e-6);
            Assert.AreEqual(1, solver.Solution[1], 1e-6);

            Assert.IsFalse(Double.IsNaN(minValue));
            Assert.IsFalse(Double.IsNaN(solver.Solution[0]));
            Assert.IsFalse(Double.IsNaN(solver.Solution[1]));
        }
コード例 #9
0
        public static void AugmentedLagrangianSolverConstructorTest4()
        {
            double x = 0, y = 0;

            var f = new NonlinearObjectiveFunction(

                function: () => 0.3 * x + 0.6 * y,

                gradient: () => new[]
            {
                0.3,     // df/dx
                0.6,     // df/dy
            }

                );



            var constraints = new List <NonlinearConstraint>();

            constraints.Add(new NonlinearConstraint(f,

                                                    function: () => 7 * x + 3 * y,
                                                    gradient: () => new[] { 7.0, 3.0 },

                                                    shouldBe: ConstraintType.GreaterThanOrEqualTo, value: 2100
                                                    ));

            constraints.Add(new NonlinearConstraint(f,

                                                    function: () => y,
                                                    gradient: () => new[] { 0, 1.0 },

                                                    shouldBe: ConstraintType.GreaterThanOrEqualTo, value: 1200
                                                    ));

            constraints.Add(new NonlinearConstraint(f,

                                                    function: () => x,
                                                    gradient: () => new[] { 1.0, 0 },

                                                    shouldBe: ConstraintType.GreaterThanOrEqualTo, value: 0
                                                    ));



            var solver = new AugmentedLagrangian(f, constraints);

            solver.Solution[0] = 1;
            solver.Solution[1] = 1;


            bool success = solver.Minimize();

            double[] solution = solver.Solution;


            double minValue = solver.Value;

            Console.WriteLine("Solver Value = " + solver.Value);
            Console.WriteLine("Solver Minize = " + solver.Minimize());
            Console.WriteLine("Solver Solution x = " + solver.Solution[0]);
            Console.WriteLine("Solver Solution y = " + solver.Solution[1]);
            Console.ReadKey();
        }