Esempio n. 1
0
        /// <summary>
        /// Resets the CPU, then starts the execution process
        /// </summary>
        public void Reset(BreakpointMgr bpm)
        {
            // This will cause a hard reset
            // to run programme at $fffc/$fffd
            PC = 0xFFFC;

            // Reset stack
            SP = 0xFF;

            // Force 6502 to use 0x4C as first opcode on swith on.  This is a
            // JMP $FFFC - a direct JMP.
            Opcode = 0x4C;
            PC--;
            debugHeader = 0;

            // Loop provided memory not toally shafted. In real life this doesn't happen,
            // the CPU blindly reads the byte and hopes it can do something with it.
            while (Opcode != 0)
            {
                Cycle c = new Cycle(PC);

                // Print the header, allows us to see the opcode and PC
                // when things go very wrong.
                DebugHeader(Opcode);

                // In reality, we could strip out the C below as that is used just for
                // visual purposes....
                ExecuteInstruction(c, Opcode);

                // Output all registers and flags
                DebugTail(c, bpm);

                Opcode = RAM.GetByte(c, PC);
            }
        }
Esempio n. 2
0
        /// <summary>
        /// Output various information to the console. Visual only.
        /// </summary>
        /// <param name="c"></param>
        private void DebugTail(Cycle c, BreakpointMgr bpm)
        {
            Console.ForegroundColor = ConsoleColor.Green;
            Console.Write(c.DebugRow().PadRight(30));

            Console.ForegroundColor = ConsoleColor.Yellow;
            Console.Write(String.Format(" {0:x2} {1:x2} {2:x2} {3:x2} ", A, X, Y, SP));

            Console.ForegroundColor = ConsoleColor.DarkCyan;
            Console.Write(ToBinary(Flags));

            Console.ForegroundColor = ConsoleColor.Blue;
            Console.Write(" " + c.Operand.Cycles + "+" + c.Operand.ExtraCycles + ":");

            if (c.ActualCycles < c.Operand.Cycles || c.ActualCycles > c.Operand.Cycles + c.Operand.ExtraCycles)
            {
                Console.ForegroundColor = ConsoleColor.Yellow;
            }

            Console.WriteLine(c.ActualCycles);

            BreakPointSet bps = bpm.ShallIBreak(this, c);

            if (bps != null || bpm.StepMode)
            {
                if (bps != null)
                {
                    Console.ForegroundColor = ConsoleColor.Yellow;
                    Console.WriteLine(bps);
                }
                var key = Console.ReadKey();
                if (key.Key == ConsoleKey.Enter)
                {
                    bpm.StepMode = false;
                }
                else
                {
                    bpm.StepMode = true;
                }
            }
        }
Esempio n. 3
0
        static void Main(string[] args)
        {
            Console.WriteLine("6502 Emulator\n");

            CPU cpu = new CPU();

            // Emulate the 6502 start up, which looks for a vector at $FFFC/$FFFD
            // and starts execution from there. Need to start one code before as
            // we musn't have zero at the load point - any value other than 0 good.
            // This is not required if we don't mind blue screen of death situations
            cpu.RAM.LoadMemnory(0xFFFB, new byte[] { 0xff, 0x00, 0x50 });

            // Variables for testing - including JMP($) for subroutine
            cpu.RAM.LoadMemnory(0x0302, new byte[] { 0xaa, 0xbb, 23, 0x50 });

            // JSR and RET Subroutine Test
            cpu.RAM.LoadMemnory(0x6040, new byte[] { 0xa2, 0x05, 0x8a, 0xaa, 0xc8, 0x98, 0xc8, 0xa8, 0x88, 0xe8, 0xca, 0x60 });

            // Main code. Tests nearly all functions, then finally JMPs to Fibonacci code
            cpu.RAM.LoadMemnory(0x5000, new byte[] { 0x6c, 0x04, 0x03, 0xa1, 0xed, 0xa1, 0x00, 0xa1, 0xed, 0xa9, 0x01, 0xbd, 0x02, 0x01, 0xb1, 0xff, 0xa2, 127,
                                                     0xe8, 0xa2, 0xff, 0xe8, 0xca, 0xd0, 0x01, 0xea, 0xa2, 0x04, 0xca, 0xd0, 0xfd, 0xca, 0x20, 0x40, 0x60, 0xEA, 0x38, 0x18,
                                                     0xf8, 0xd8, 0x78, 0x58, 0x8d, 0x00, 0x40, 0xa9, 0x0, 0xad, 0x00, 0x40, 0x8e, 0x00, 0x40, 0xad, 0x00, 0x40,
                                                     0x4c, 0x00, 0x70 });

            // Fibonacci Sequence
            cpu.RAM.LoadMemnory(0x7000, new byte[] { 0xa0, 0x07, 0xa9, 0x00, 0x8d, 0x00, 0x40, 0xa9, 0x01,
                                                     0xaa, 0x18, 0x6d, 0x00, 0x40, 0x8e, 0x00, 0x40, 0x88, 0xd0, 0xf5, 0xea });

            // Add some breakpoints for fun.
            BreakpointMgr mgr = new BreakpointMgr();
            BreakPointSet bps = new BreakPointSet(5, "5th time at 0x700e");

            mgr.AddBreakPointSet(bps);
            bps.AddBreakPoint("PC", 0x700e);

            BreakPointSet bps2 = new BreakPointSet(1, "A = 8 and Y=2 for the first time");

            mgr.AddBreakPointSet(bps2);
            bps2.AddBreakPoint("A", 0x08);
            bps2.AddBreakPoint("Y", 0x02);

            // You dont need to name the break point, and if you dont provide a count
            // it will assume the first time the breakpoint is hit.
            BreakPointSet bps3 = new BreakPointSet();

            mgr.AddBreakPointSet(bps3);
            bps3.AddBreakPoint("Opcode", 0x18);

            BreakPointSet bps4 = new BreakPointSet(1, "Stack has exactly one entry on");

            mgr.AddBreakPointSet(bps4);
            bps4.AddBreakPoint("SP", 0xfd);

            BreakPointSet bps5 = new BreakPointSet(1, "Carry flag set");

            mgr.AddBreakPointSet(bps5);
            bps5.AddBreakPoint("C", 0x1);

            // Simulate a reset and start the execution
            cpu.Reset(mgr);
        }