public ODERayCastRequestManager(ODEPhysicsScene pScene)
        {
            m_scene = pScene;
            nearCallback = NearSpace;

            ContactgeomsArray = Marshal.AllocHGlobal(contactsPerCollision * d.ContactGeom.unmanagedSizeOf);
        }
Esempio n. 2
0
        public PhysicsScene GetScene()
        {
            lock (m_lock) {
                if (_mScene == null) {
                    if (!m_initialized) //Only initialize ode once!
                    {
                        // Initializing ODE only when a scene is created allows alternative ODE plugins to co-habit (according to
                        // http://opensimulator.org/mantis/view.php?id=2750).
                        d.InitODE ();
                        m_initialized = true;
                    }

                    _mScene = new ODEPhysicsScene ();
                }

                return _mScene;
            }
        }
 public ODESpecificAvatar(String avName, ODEPhysicsScene parent_scene, Vector3 pos, Quaternion rotation,
                          Vector3 size) : base(avName, parent_scene, pos, rotation, size)
 {
     _parent_ref = this;
 }
        public ODECharacter(String avName, ODEPhysicsScene parent_scene, Vector3 pos, Quaternion rotation,
                                  Vector3 size)
        {
            m_uuid = UUID.Random();
            _parent_scene = parent_scene;

            m_taintRotation = rotation;

            if (pos.IsFinite())
            {
                if (pos.Z > 9999999f || pos.Z < -90f)
                {
                    pos.Z =
                        _parent_scene.GetTerrainHeightAtXY(_parent_scene.Region.RegionSizeX*0.5f,
                                                           _parent_scene.Region.RegionSizeY*0.5f) + 5.0f;
                }
                _position = pos;
            }
            else
            {
                _position.X = _parent_scene.Region.RegionSizeX*0.5f;
                _position.Y = _parent_scene.Region.RegionSizeY*0.5f;
                _position.Z = _parent_scene.GetTerrainHeightAtXY(_position.X, _position.Y) + 10f;

                MainConsole.Instance.Warn("[ODE Physics]: Got NaN Position on Character Create");
            }


            m_isPhysical = false; // current status: no ODE information exists
            Size = size;
            Name = avName;
        }
Esempio n. 5
0
        public ODEPrim(string name, byte physicsType, PrimitiveBaseShape shape, Vector3 position, Vector3 size, Quaternion rotation, 
            int material, float friction, float restitution, float gravityMultiplier, float density, ODEPhysicsScene parent_scene)
        {
            m_vehicle = new ODEDynamics();

            // correct for changed timestep
            PID_D /= (parent_scene.ODE_STEPSIZE*50f); // original ode fps of 50
            PID_G /= (parent_scene.ODE_STEPSIZE*50f);

            body_autodisable_frames = parent_scene.bodyFramesAutoDisable;

            prim_geom = IntPtr.Zero;

            _name = name;
            PhysicsShapeType = physicsType;
            _size = size;
            _position = position;
            fakepos = 0;
            _orientation = rotation;
            fakeori = 0;
            _pbs = shape;

            _parent_scene = parent_scene;
            m_targetSpace = IntPtr.Zero;

            /*
                        m_isphysical = pisPhysical;
                        if (m_isphysical)
                            m_targetSpace = _parent_scene.space;
            */
            m_isphysical = false;

            m_forceacc = Vector3.Zero;
            m_angularforceacc = Vector3.Zero;

            hasOOBoffsetFromMesh = false;
            _triMeshData = IntPtr.Zero;

            SetMaterial(material, friction, restitution, gravityMultiplier, density);

            CalcPrimBodyData();

            _parent_scene.AddSimulationChange(() => ChangeAdd());
        }
Esempio n. 6
0
        void MoveAngular(float pTimestep, ODEPhysicsScene _pParentScene, ODEPrim parent)
        {
            bool ishovering = false;
            d.Vector3 d_angularVelocity = d.BodyGetAngularVel(Body);
            d.Vector3 d_lin_vel_now = d.BodyGetLinearVel(Body);
            d.Quaternion drotq = d.BodyGetQuaternion(Body);
            Quaternion rotq = new Quaternion(drotq.X, drotq.Y, drotq.Z, drotq.W);
            rotq *= m_referenceFrame; //add reference rotation to rotq
            Quaternion irotq = new Quaternion(-rotq.X, -rotq.Y, -rotq.Z, rotq.W);
            Vector3 angularVelocity = new Vector3(d_angularVelocity.X, d_angularVelocity.Y, d_angularVelocity.Z);
            Vector3 linearVelocity = new Vector3(d_lin_vel_now.X, d_lin_vel_now.Y, d_lin_vel_now.Z);

            Vector3 friction = Vector3.Zero;
            Vector3 vertattr = Vector3.Zero;
            Vector3 deflection = Vector3.Zero;
            Vector3 banking = Vector3.Zero;

            //limit maximum rotation speed
            if(angularVelocity.LengthSquared() > 1e3f) {
                angularVelocity = Vector3.Zero;
                d.BodySetAngularVel(Body, angularVelocity.X, angularVelocity.Y, angularVelocity.Z);
            }

            angularVelocity *= irotq; //world to body orientation

            if(m_VhoverTimescale * pTimestep <= 300.0f && m_VhoverHeight > 0.0f) ishovering = true;

            #region Angular motor
            Vector3 motorDirection = Vector3.Zero;

            if(Type == Vehicle.TYPE_BOAT) {
                //keep z flat for boats, no sidediving lol
                Vector3 tmp = new Vector3(0.0f, 0.0f, m_angularMotorDirection.Z);
                m_angularMotorDirection.Z = 0.0f;
                m_angularMotorDirection += tmp * irotq;
            }

            if(parent.LinkSetIsColliding || Type == Vehicle.TYPE_AIRPLANE || Type == Vehicle.TYPE_BALLOON || ishovering){
                motorDirection = m_angularMotorDirection * 0.34f; //0.3f;
            }

            m_angularMotorVelocity.X = (motorDirection.X - angularVelocity.X) / m_angularMotorTimescale;
            m_angularMotorVelocity.Y = (motorDirection.Y - angularVelocity.Y) / m_angularMotorTimescale;
            m_angularMotorVelocity.Z = (motorDirection.Z - angularVelocity.Z) / m_angularMotorTimescale;
            m_angularMotorDirection *= (1.0f - 1.0f/m_angularMotorDecayTimescale);

            if(m_angularMotorDirection.LengthSquared() > 0.0f)
            {
                if(angularVelocity.X > m_angularMotorDirection.X && m_angularMotorDirection.X >= 0.0f) m_angularMotorVelocity.X = 0.0f;
                if(angularVelocity.Y > m_angularMotorDirection.Y && m_angularMotorDirection.Y >= 0.0f) m_angularMotorVelocity.Y = 0.0f;
                if(angularVelocity.Z > m_angularMotorDirection.Z && m_angularMotorDirection.Z >= 0.0f) m_angularMotorVelocity.Z = 0.0f;

                if(angularVelocity.X < m_angularMotorDirection.X && m_angularMotorDirection.X <= 0.0f) m_angularMotorVelocity.X = 0.0f;
                if(angularVelocity.Y < m_angularMotorDirection.Y && m_angularMotorDirection.Y <= 0.0f) m_angularMotorVelocity.Y = 0.0f;
                if(angularVelocity.Z < m_angularMotorDirection.Z && m_angularMotorDirection.Z <= 0.0f) m_angularMotorVelocity.Z = 0.0f;
            }

            #endregion

            #region friction

            float initialFriction = 0.0001f;
            if(angularVelocity.X > initialFriction) friction.X += initialFriction;
    	    if(angularVelocity.Y > initialFriction) friction.Y += initialFriction;
    	    if(angularVelocity.Z > initialFriction) friction.Z += initialFriction;
            if(angularVelocity.X < -initialFriction) friction.X -= initialFriction;
            if(angularVelocity.Y < -initialFriction) friction.Y -= initialFriction;
            if(angularVelocity.Z < -initialFriction) friction.Z -= initialFriction;

            if(angularVelocity.X > 0.0f)
                friction.X += angularVelocity.X * angularVelocity.X / m_angularFrictionTimescale.X;
            else
                friction.X -= angularVelocity.X * angularVelocity.X / m_angularFrictionTimescale.X;
            
            if(angularVelocity.Y > 0.0f)
                friction.Y += angularVelocity.Y * angularVelocity.Y / m_angularFrictionTimescale.Y;
            else
                friction.Y -= angularVelocity.Y * angularVelocity.Y / m_angularFrictionTimescale.Y;

            if(angularVelocity.Z > 0.0f)
                friction.Z += angularVelocity.Z * angularVelocity.Z / m_angularFrictionTimescale.Z;
            else
                friction.Z -= angularVelocity.Z * angularVelocity.Z / m_angularFrictionTimescale.Z;


            if(Math.Abs(m_angularMotorDirection.X) > 0.01f) friction.X = 0.0f;
            if(Math.Abs(m_angularMotorDirection.Y) > 0.01f) friction.Y = 0.0f;
            if(Math.Abs(m_angularMotorDirection.Z) > 0.01f) friction.Z = 0.0f;

            #endregion

            #region Vertical attraction

            if(m_verticalAttractionTimescale < 300)
            {
                float VAservo = 38.0f / m_verticalAttractionTimescale;
                if(Type == Vehicle.TYPE_CAR) VAservo = 10.0f / m_verticalAttractionTimescale;

                Vector3 verterr = new Vector3(0.0f, 0.0f, 1.0f);
                verterr *= rotq;
                vertattr.X = verterr.Y;
                vertattr.Y = -verterr.X;
                vertattr.Z = 0.0f;

                vertattr *= irotq;

                //when upsidedown prefer x rotation of body, to keep forward movement direction the same
                if(verterr.Z < 0.0f) {
                    vertattr.Y = -vertattr.Y * 2.0f;
                    if(vertattr.X < 0.0f) vertattr.X = -2.0f - vertattr.X;
                    else vertattr.X = 2.0f - vertattr.X;
                }

                vertattr *= VAservo;

                vertattr.X += (vertattr.X - angularVelocity.X) * (0.004f * m_verticalAttractionEfficiency + 0.0001f);
                vertattr.Y += (vertattr.Y - angularVelocity.Y) * (0.004f * m_verticalAttractionEfficiency + 0.0001f);

                if((m_flags & (VehicleFlag.LIMIT_ROLL_ONLY)) != 0) vertattr.Y = 0.0f;
            }

            #endregion

            #region deflection
            //rotates body to direction of movement (linearMovement vector)
			// temporary disabled due to instabilities, needs to be rewritten
            if(m_angularDeflectionTimescale < 300)
            {
                float Dservo = 0.05f * m_angularDeflectionTimescale * m_angularDeflectionEfficiency;
                float mag = linearVelocity.LengthSquared();
                if(mag > 0.01f) {
                    linearVelocity.Y = -linearVelocity.Y;
                    linearVelocity *= rotq;

                    mag = (float)Math.Sqrt(mag);

                    linearVelocity.Y /= mag;
                    linearVelocity.Z /= mag;

                    deflection.Y = -linearVelocity.Z;
                    deflection.Z = -linearVelocity.Y;

                    deflection *= Dservo;
                }
            }
			//
            #endregion

            #region banking

            if(m_verticalAttractionTimescale < 300 && m_bankingEfficiency > 0) { //vertical attraction must be enabled		
                float mag = (linearVelocity.X * linearVelocity.X + linearVelocity.Y * linearVelocity.Y);
                if(mag > 0.01f) {
                    mag = (float)Math.Sqrt(mag);
                    if(mag > 20.0f) mag = 1.0f;
                    else mag /= 20.0f;
                }
                else mag = 0.0f;

                float b_static = -m_angularMotorDirection.X * 0.12f * (1.0f - m_bankingMix);
                float b_dynamic = -m_angularMotorDirection.X * 0.12f * mag * m_bankingMix;

                banking.Z = (b_static + b_dynamic - d_angularVelocity.Z) / m_bankingTimescale * m_bankingEfficiency;
            }

            #endregion

            m_lastAngularVelocity = angularVelocity;
            
            if(parent.LinkSetIsColliding || Type == Vehicle.TYPE_AIRPLANE || Type == Vehicle.TYPE_BALLOON || ishovering) {		
                angularVelocity += deflection;
                angularVelocity -= friction;
            }
            else {
                banking = Vector3.Zero;
            }

            angularVelocity += m_angularMotorVelocity;
            angularVelocity += vertattr;
            angularVelocity *= rotq;
            angularVelocity += banking;

            if(angularVelocity.LengthSquared() < 1e-5f) {
                d.BodySetAngularVel(Body, 0, 0, 0);
                m_angularZeroFlag = true;
            }
            else {
                d.BodySetAngularVel(Body, angularVelocity.X, angularVelocity.Y, angularVelocity.Z);
                m_angularZeroFlag = false;
            }
        }
Esempio n. 7
0
        // end Step

        void MoveLinear(float pTimestep, ODEPhysicsScene _pParentScene, ODEPrim parent)
        {
            bool ishovering = false;
            bool bypass_buoyancy = false;
            d.Vector3 dpos = d.BodyGetPosition(Body);
            d.Vector3 dvel_now = d.BodyGetLinearVel(Body);
            d.Quaternion drotq_now = d.BodyGetQuaternion(Body);

            Vector3 pos = new Vector3(dpos.X, dpos.Y, dpos.Z);
            Vector3 vel_now = new Vector3(dvel_now.X, dvel_now.Y, dvel_now.Z);
            Quaternion rotq = new Quaternion(drotq_now.X, drotq_now.Y, drotq_now.Z, drotq_now.W);
            rotq *= m_referenceFrame; //add reference rotation to rotq
            Quaternion irotq = new Quaternion(-rotq.X, -rotq.Y, -rotq.Z, rotq.W);

            m_newVelocity = Vector3.Zero;

            if (!(m_lastPositionVector.X == 0 &&
                  m_lastPositionVector.Y == 0 &&
                  m_lastPositionVector.Z == 0))
            {
                ///Only do this if we have a last position
                m_lastposChange.X = pos.X - m_lastPositionVector.X;
                m_lastposChange.Y = pos.Y - m_lastPositionVector.Y;
                m_lastposChange.Z = pos.Z - m_lastPositionVector.Z;
            }

            #region Blocking Change

            if (m_BlockingEndPoint != Vector3.Zero)
            {
                bool needUpdateBody = false;
                if(pos.X >= (m_BlockingEndPoint.X - 1)) {
                    pos.X -= m_lastposChange.X + 1;
                    needUpdateBody = true;
                }
                if(pos.Y >= (m_BlockingEndPoint.Y - 1)) {
                    pos.Y -= m_lastposChange.Y + 1;
                    needUpdateBody = true;
                }
                if(pos.Z >= (m_BlockingEndPoint.Z - 1)) {
                    pos.Z -= m_lastposChange.Z + 1;
                    needUpdateBody = true;
                }
                if(pos.X <= 0) {
                    pos.X += m_lastposChange.X + 1;
                    needUpdateBody = true;
                }
                if(pos.Y <= 0) {
                    pos.Y += m_lastposChange.Y + 1;
                    needUpdateBody = true;
                }
                if(needUpdateBody)
                    d.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
            }

            #endregion

            #region Terrain checks

            float terrainHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y);
            if(pos.Z < terrainHeight - 5) {
                pos.Z = terrainHeight + 2;
                m_lastPositionVector = pos;
                d.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
            }
            else if(pos.Z < terrainHeight) {
                m_newVelocity.Z += 1;
            }

            #endregion

            #region Hover

            Vector3 hovervel = Vector3.Zero;
            if(m_VhoverTimescale * pTimestep <= 300.0f && m_VhoverHeight > 0.0f) {
                ishovering = true;

                if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0) {
                    m_VhoverTargetHeight = (float) _pParentScene.GetWaterLevel(pos.X, pos.Y) + 0.3f + m_VhoverHeight;
                }
                else if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0) {
                    m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
                }
                else if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0) {
                    m_VhoverTargetHeight = m_VhoverHeight;
                }
                else {
                    float waterlevel = (float)_pParentScene.GetWaterLevel(pos.X, pos.Y) + 0.3f;
                    float terrainlevel = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y);
                    if(waterlevel > terrainlevel) {
                        m_VhoverTargetHeight = waterlevel + m_VhoverHeight;
                    }
                    else {
                        m_VhoverTargetHeight = terrainlevel + m_VhoverHeight;
                    }
                }

                float tempHoverHeight = m_VhoverTargetHeight;
                if((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0) {
                    // If body is aready heigher, use its height as target height
                    if (pos.Z > tempHoverHeight) {
                        tempHoverHeight = pos.Z;
                        bypass_buoyancy = true; //emulate sl bug
                    }
                }
                if((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0) {
                    if((pos.Z - tempHoverHeight) > .2 || (pos.Z - tempHoverHeight) < -.2) {
                        float h = tempHoverHeight;
                        float groundHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y);
                        if(groundHeight >= tempHoverHeight) 
                            h = groundHeight;

                        d.BodySetPosition(Body, pos.X, pos.Y, h);
                    }
                }
                else {
                    hovervel.Z -= ((dvel_now.Z * 0.1f * m_VhoverEfficiency) + (pos.Z - tempHoverHeight)) / m_VhoverTimescale;
                    hovervel.Z *= 7.0f * (1.0f + m_VhoverEfficiency);

                    if(hovervel.Z > 50.0f) hovervel.Z = 50.0f;
                    if(hovervel.Z < -50.0f) hovervel.Z = -50.0f;
                }
            }

            #endregion

            #region limitations

            //limit maximum velocity
            if(vel_now.LengthSquared() > 1e6f) {
                vel_now /= vel_now.Length();
                vel_now *= 1000f;
                d.BodySetLinearVel(Body, vel_now.X, vel_now.Y, vel_now.Z);
            }

            //block movement in x and y when low velocity
            bool enable_ode_gravity = true;
            if(vel_now.LengthSquared() < 0.02f) {
                d.BodySetLinearVel(Body, 0.0f, 0.0f, 0.0f);
                vel_now = Vector3.Zero;
                if(parent.LinkSetIsColliding)
                    enable_ode_gravity = false;
            }

            #endregion

            #region Linear motors

            //cancel directions of linear friction for certain vehicles without having effect on ode gravity
            Vector3 vt_vel_now = vel_now;
            bool no_grav_calc = false;
            if((Type != Vehicle.TYPE_AIRPLANE && Type != Vehicle.TYPE_BALLOON) && m_VehicleBuoyancy != 1.0f) {
                vt_vel_now.Z = 0.0f;
                no_grav_calc = true;
            }

            if(!bypass_buoyancy) {
                //apply additional gravity force over ode gravity
                if(m_VehicleBuoyancy == 1.0f) enable_ode_gravity = false;
                else if(m_VehicleBuoyancy != 0.0f && enable_ode_gravity) {
                    float grav = _pParentScene.gravityz * parent.GravityMultiplier * -m_VehicleBuoyancy;
                    m_newVelocity.Z += grav * Mass;
                }
            }

            //set ode gravity
            d.BodySetGravityMode(Body, enable_ode_gravity);

            //add default linear friction (mimic sl friction as much as possible)
            float initialFriction = 0.055f;
            float defaultFriction = 180f;

            Vector3 friction = Vector3.Zero;
            if(parent.LinkSetIsColliding || ishovering) {
                if(vt_vel_now.X > 0.0f) friction.X += initialFriction;
                if(vt_vel_now.Y > 0.0f) friction.Y += initialFriction;
                if(vt_vel_now.Z > 0.0f) friction.Z += initialFriction;
                if(vt_vel_now.X < 0.0f) friction.X -= initialFriction;
                if(vt_vel_now.Y < 0.0f) friction.Y -= initialFriction;
                if(vt_vel_now.Z < 0.0f) friction.Z -= initialFriction;
                friction += vt_vel_now / defaultFriction;
                friction *= irotq;
            }

            //world -> body orientation
            vel_now *= irotq;
            vt_vel_now *= irotq;

            //add linear friction
            if(vt_vel_now.X > 0.0f)
                friction.X += vt_vel_now.X * vt_vel_now.X / m_linearFrictionTimescale.X;
            else
                friction.X -= vt_vel_now.X * vt_vel_now.X / m_linearFrictionTimescale.X;

            if(vt_vel_now.Y > 0.0f)
                friction.Y += vt_vel_now.Y * vt_vel_now.Y / m_linearFrictionTimescale.Y;
            else
                friction.Y -= vt_vel_now.Y * vt_vel_now.Y / m_linearFrictionTimescale.Y;

            if(vt_vel_now.Z > 0.0f)
                friction.Z += vt_vel_now.Z * vt_vel_now.Z / m_linearFrictionTimescale.Z;
            else
                friction.Z -= vt_vel_now.Z * vt_vel_now.Z / m_linearFrictionTimescale.Z;
	    
            friction /= 1.35f; //1.5f;

            //add linear forces
            //not the best solution, but it is really close to sl motor velocity, and just works
            Vector3 motorVelocity = (m_linearMotorDirection * 3.0f - vel_now) / m_linearMotorTimescale / 5.0f;  //2.8f;
            Vector3 motorfrictionamp = new Vector3(4.0f, 4.0f, 4.0f);
            Vector3 motorfrictionstart = new Vector3(1.0f, 1.0f, 1.0f);
            motorVelocity *= motorfrictionstart + motorfrictionamp / (m_linearFrictionTimescale * pTimestep);
            float addVel = 0.15f;
            if(motorVelocity.LengthSquared() > 0.01f) {
                if(motorVelocity.X > 0.0f) motorVelocity.X += addVel;
                if(motorVelocity.Y > 0.0f) motorVelocity.Y += addVel;
                if(motorVelocity.Z > 0.0f) motorVelocity.Z += addVel;
                if(motorVelocity.X < 0.0f) motorVelocity.X -= addVel;
                if(motorVelocity.Y < 0.0f) motorVelocity.Y -= addVel;
                if(motorVelocity.Z < 0.0f) motorVelocity.Z -= addVel;
            }

            //free run
            if(vel_now.X > m_linearMotorDirection.X && m_linearMotorDirection.X >= 0.0f) motorVelocity.X = 0.0f;
            if(vel_now.Y > m_linearMotorDirection.Y && m_linearMotorDirection.Y >= 0.0f) motorVelocity.Y = 0.0f;
            if(vel_now.Z > m_linearMotorDirection.Z && m_linearMotorDirection.Z >= 0.0f) motorVelocity.Z = 0.0f;

            if(vel_now.X < m_linearMotorDirection.X && m_linearMotorDirection.X <= 0.0f) motorVelocity.X = 0.0f;
            if(vel_now.Y < m_linearMotorDirection.Y && m_linearMotorDirection.Y <= 0.0f) motorVelocity.Y = 0.0f;
            if(vel_now.Z < m_linearMotorDirection.Z && m_linearMotorDirection.Z <= 0.0f) motorVelocity.Z = 0.0f;

            //decay linear motor
            m_linearMotorDirection *= (1.0f - 1.0f/m_linearMotorDecayTimescale);

            #endregion

            #region Deflection

            //does only deflect on x axis from world orientation with z axis rotated to body
            //it is easier to filter out gravity deflection for vehicles(car) without rotation problems
            Quaternion irotq_z = irotq;
            irotq_z.X = 0.0f;
            irotq_z.Y = 0.0f;
            float mag = (float)Math.Sqrt(irotq_z.W * irotq_z.W + irotq_z.Z * irotq_z.Z); //normalize
            irotq_z.W /= mag;
            irotq_z.Z /= mag;

            Vector3 vel_defl = new Vector3(dvel_now.X, dvel_now.Y, dvel_now.Z);
            vel_defl *= irotq_z;
            if(no_grav_calc) {
                vel_defl.Z = 0.0f;
                if(!parent.LinkSetIsColliding) vel_defl.Y = 0.0f;
            }

            Vector3 deflection = vel_defl / m_linearDeflectionTimescale * m_linearDeflectionEfficiency * 100.0f;
            
			float deflectionLengthY = Math.Abs(deflection.Y);
            float deflectionLengthX = Math.Abs(deflection.X);

            deflection.Z = 0.0f;
            if((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) == 0) {
                deflection.Z = deflectionLengthX;
                deflection.X = -deflection.X;
            }

            if(vel_defl.X < 0.0f) deflection.X = -deflectionLengthY;
            else if(vel_defl.X >= 0.0f) deflection.X = deflectionLengthY;
            deflection.Y = -deflection.Y;

            irotq_z.W = -irotq_z.W;
            deflection *= irotq_z;

            #endregion

            #region Deal with tainted forces

            Vector3 TaintedForce = new Vector3();
            if(m_forcelist.Count != 0) {
                try {
                    TaintedForce = m_forcelist.Aggregate(TaintedForce, (current, t) => current + (t));
                }
                catch(IndexOutOfRangeException) {
                    TaintedForce = Vector3.Zero;
                }
                catch(ArgumentOutOfRangeException) {
                    TaintedForce = Vector3.Zero;
                }
                m_forcelist = new List<Vector3>();
            }

            #endregion

            #region Add Forces

            //add forces
            m_newVelocity -= (friction *= Mass / pTimestep);
            m_newVelocity += TaintedForce;
            motorVelocity *= Mass / pTimestep;

            #endregion

            #region No X,Y,Z

            if((m_flags & (VehicleFlag.NO_X)) != 0)
                m_newVelocity.X = -vel_now.X * Mass / pTimestep;
            if((m_flags & (VehicleFlag.NO_Y)) != 0)
                m_newVelocity.Y = -vel_now.Y * Mass / pTimestep;
            if((m_flags & (VehicleFlag.NO_Z)) != 0)
                m_newVelocity.Z = -vel_now.Z * Mass / pTimestep;

            #endregion

    	    m_newVelocity *= rotq;
            m_newVelocity += (hovervel *= Mass / pTimestep);
	    
            if(parent.LinkSetIsColliding || Type == Vehicle.TYPE_AIRPLANE || Type == Vehicle.TYPE_BALLOON || ishovering) {
                m_newVelocity += deflection;

                motorVelocity *= rotq;

                if((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0 && motorVelocity.Z > 0.0f) motorVelocity.Z = 0.0f;
                m_newVelocity += motorVelocity;
            }

            d.BodyAddForce(Body, m_newVelocity.X, m_newVelocity.Y, m_newVelocity.Z);

        }
Esempio n. 8
0
        internal void Step(IntPtr pBody, float pTimestep, ODEPhysicsScene pParentScene, ODEPrim parent)
        {
            m_body = pBody;
            if (pBody == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
                return;
            if (Mass == 0)
                GetMass(pBody);
            if (Mass == 0)
                return; //No noMass vehicles...
            if (!d.BodyIsEnabled(Body))
                d.BodyEnable(Body);

            frcount++; // used to limit debug comment output
            if (frcount > 100)
                frcount = 0;

            // scale time so parameters work as before
            // until we scale then acording to ode step time

            MoveLinear(pTimestep, pParentScene, parent);
            MoveAngular(pTimestep, pParentScene, parent);
            LimitRotation(pTimestep);
        }
Esempio n. 9
0
 internal void Enable(IntPtr pBody, ODEPrim parent, ODEPhysicsScene pParentScene)
 {
     if (m_enabled)
         return;
     if (pBody == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
         return;
     m_body = pBody;
     d.BodySetGravityMode(Body, true);
     m_enabled = true;
     m_lastLinearVelocityVector = parent.Velocity;
     m_lastPositionVector = parent.Position;
     m_lastAngularVelocity = parent.RotationalVelocity;
     parent.ThrottleUpdates = false;
     GetMass(pBody);
 }
 /// <summary>
 ///     Dereference the creator scene so that it can be garbage collected if needed.
 /// </summary>
 internal void Dispose()
 {
     m_scene = null;
     if (ContactgeomsArray != IntPtr.Zero)
         Marshal.FreeHGlobal(ContactgeomsArray);
 }