/** * <summary>Solves a two-dimensional linear program subject to linear * constraints defined by lines and a circular constraint.</summary> * * <param name="lines">Lines defining the linear constraints.</param> * <param name="numObstLines">Count of obstacle lines.</param> * <param name="beginLine">The line on which the 2-d linear program * failed.</param> * <param name="radius">The radius of the circular constraint.</param> * <param name="result">A reference to the result of the linear program. * </param> */ private void linearProgram3(IList <Line> lines, int numObstLines, int beginLine, KInt radius, ref KInt2 result) { KInt distance = 0; for (int i = beginLine; i < lines.Count; ++i) { if (RVOMath.det(lines[i].direction, lines[i].point - result) > distance) { /* Result does not satisfy constraint of line i. */ IList <Line> projLines = new List <Line>(); for (int ii = 0; ii < numObstLines; ++ii) { projLines.Add(lines[ii]); } for (int j = numObstLines; j < i; ++j) { Line line = new Line(); KInt determinant = RVOMath.det(lines[i].direction, lines[j].direction); if (RVOMath.fabs(determinant) <= 0) { /* Line i and line j are parallel. */ if (RVOMath.Dot(lines[i].direction, lines[j].direction) > 0) { /* Line i and line j point in the same direction. */ continue; } else { /* Line i and line j point in opposite direction. */ line.point = (lines[i].point + lines[j].point) / 2; } } else { line.point = lines[i].point + (RVOMath.det(lines[j].direction, lines[i].point - lines[j].point) / determinant) * lines[i].direction; } line.direction = RVOMath.normalize((lines[j].direction - lines[i].direction)); projLines.Add(line); } KInt2 tempResult = result; if (linearProgram2(projLines, radius, KInt2.ToInt2(-lines[i].direction.IntY, lines[i].direction.IntX), true, ref result) < projLines.Count) { /* * This should in principle not happen. The result is by * definition already in the feasible region of this * linear program. If it fails, it is due to small * floating point error, and the current result is kept. */ result = tempResult; } distance = RVOMath.det(lines[i].direction, lines[i].point - result); } } }
/** * <summary>Computes the new velocity of this agent.</summary> */ internal void computeNewVelocity() { orcaLines_.Clear(); //KInt invTimeHorizonObst = 1 / timeHorizonObst_; KInt tempradius = radius_ / timeHorizonObst_; /* Create obstacle ORCA lines. */ for (int i = 0; i < obstacleNeighbors_.Count; ++i) { Obstacle obstacle1 = obstacleNeighbors_[i].Value; Obstacle obstacle2 = obstacle1.next_; KInt2 relativePosition1 = obstacle1.point_ - position_; KInt2 relativePosition2 = obstacle2.point_ - position_; /* * Check if velocity obstacle of obstacle is already taken care * of by previously constructed obstacle ORCA lines. */ bool alreadyCovered = false; for (int j = 0; j < orcaLines_.Count; ++j) { if (RVOMath.det(relativePosition1 / timeHorizonObst_ - orcaLines_[j].point, orcaLines_[j].direction) - tempradius >= 0 && RVOMath.det(relativePosition2 / timeHorizonObst_ - orcaLines_[j].point, orcaLines_[j].direction) - tempradius >= 0) { alreadyCovered = true; break; } } if (alreadyCovered) { continue; } /* Not yet covered. Check for collisions. */ KInt distSq1 = RVOMath.absSq(relativePosition1); KInt distSq2 = RVOMath.absSq(relativePosition2); KInt radiusSq = RVOMath.sqr(radius_); KInt2 obstacleVector = obstacle2.point_ - obstacle1.point_; KInt s = (-RVOMath.Dot(relativePosition1, obstacleVector)) / RVOMath.absSq(obstacleVector); KInt distSqLine = RVOMath.absSq(-relativePosition1 - s * obstacleVector); Line line = new Line(); if (s < 0 && distSq1 <= radiusSq) { /* Collision with left vertex. Ignore if non-convex. */ if (obstacle1.convex_) { line.point = KInt2.zero; line.direction = RVOMath.normalize(KInt2.ToInt2(-relativePosition1.IntY, relativePosition1.IntX)); orcaLines_.Add(line); } continue; } else if (s > 1 && distSq2 <= radiusSq) { /* * Collision with right vertex. Ignore if non-convex or if * it will be taken care of by neighboring obstacle. */ if (obstacle2.convex_ && RVOMath.det(relativePosition2, obstacle2.direction_) >= 0) { line.point = KInt2.zero; line.direction = RVOMath.normalize(KInt2.ToInt2(-relativePosition2.IntY, relativePosition2.IntX)); orcaLines_.Add(line); } continue; } else if (s >= 0 && s < 1 && distSqLine <= radiusSq) { /* Collision with obstacle segment. */ line.point = KInt2.zero; line.direction = -obstacle1.direction_; orcaLines_.Add(line); continue; } /* * No collision. Compute legs. When obliquely viewed, both legs * can come from a single vertex. Legs extend cut-off line when * non-convex vertex. */ KInt2 leftLegDirection, rightLegDirection; if (s < 0 && distSqLine <= radiusSq) { /* * Obstacle viewed obliquely so that left vertex * defines velocity obstacle. */ if (!obstacle1.convex_) { /* Ignore obstacle. */ continue; } obstacle2 = obstacle1; KInt leg1 = RVOMath.sqrt(distSq1 - radiusSq); leftLegDirection = KInt2.ToInt2(relativePosition1.IntX * leg1 - relativePosition1.IntY * radius_, relativePosition1.IntX * radius_ + relativePosition1.IntY * leg1) / distSq1; rightLegDirection = KInt2.ToInt2(relativePosition1.IntX * leg1 + relativePosition1.IntY * radius_, -relativePosition1.IntX * radius_ + relativePosition1.IntY * leg1) / distSq1; if (isover(leftLegDirection) || isover(rightLegDirection)) { UnityEngine.Debug.LogError("!!!"); } } else if (s > 1 && distSqLine <= radiusSq) { /* * Obstacle viewed obliquely so that * right vertex defines velocity obstacle. */ if (!obstacle2.convex_) { /* Ignore obstacle. */ continue; } obstacle1 = obstacle2; KInt leg2 = RVOMath.sqrt(distSq2 - radiusSq); leftLegDirection = KInt2.ToInt2(relativePosition2.IntX * leg2 - relativePosition2.IntY * radius_, relativePosition2.IntX * radius_ + relativePosition2.IntY * leg2) / distSq2; rightLegDirection = KInt2.ToInt2(relativePosition2.IntX * leg2 + relativePosition2.IntY * radius_, -relativePosition2.IntX * radius_ + relativePosition2.IntY * leg2) / distSq2; if (isover(leftLegDirection) || isover(rightLegDirection)) { Debug.LogError("!!!"); } } else { /* Usual situation. */ if (obstacle1.convex_) { KInt leg1 = RVOMath.sqrt(distSq1 - radiusSq); leftLegDirection = KInt2.ToInt2(relativePosition1.IntX * leg1 - relativePosition1.IntY * radius_, relativePosition1.IntX * radius_ + relativePosition1.IntY * leg1) / distSq1; if (isover(leftLegDirection)) { Debug.LogError("!!!"); } } else { /* Left vertex non-convex; left leg extends cut-off line. */ leftLegDirection = -obstacle1.direction_; if (isover(leftLegDirection)) { Debug.LogError("!!!"); } } if (obstacle2.convex_) { KInt leg2 = RVOMath.sqrt(distSq2 - radiusSq); rightLegDirection = KInt2.ToInt2(relativePosition2.IntX * leg2 + relativePosition2.IntY * radius_, -relativePosition2.IntX * radius_ + relativePosition2.IntY * leg2) / distSq2; if (isover(rightLegDirection)) { Debug.LogError("!!!"); } } else { /* Right vertex non-convex; right leg extends cut-off line. */ rightLegDirection = obstacle1.direction_; if (isover(rightLegDirection)) { Debug.LogError("!!!"); } } } /* * Legs can never point into neighboring edge when convex * vertex, take cutoff-line of neighboring edge instead. If * velocity projected on "foreign" leg, no constraint is added. */ Obstacle leftNeighbor = obstacle1.previous_; bool isLeftLegForeign = false; bool isRightLegForeign = false; if (obstacle1.convex_ && RVOMath.det(leftLegDirection, -leftNeighbor.direction_) >= 0) { /* Left leg points into obstacle. */ leftLegDirection = -leftNeighbor.direction_; if (isover(leftLegDirection)) { Debug.LogError("!!!"); } isLeftLegForeign = true; } if (obstacle2.convex_ && RVOMath.det(rightLegDirection, obstacle2.direction_) <= 0) { /* Right leg points into obstacle. */ rightLegDirection = obstacle2.direction_; isRightLegForeign = true; if (isover(rightLegDirection)) { Debug.LogError("!!!"); } } /* Compute cut-off centers. */ KInt2 leftCutOff = (obstacle1.point_ - position_) / timeHorizonObst_; KInt2 rightCutOff = (obstacle2.point_ - position_) / timeHorizonObst_; KInt2 cutOffVector = rightCutOff - leftCutOff; /* Project current velocity on velocity obstacle. */ /* Check if current velocity is projected on cutoff circles. */ KInt sqvalue = RVOMath.absSq(cutOffVector); KInt t = KInt.ToInt(KInt.divscale / 2); if (obstacle1 != obstacle2) { if (sqvalue == 0) { t = KInt.MaxValue; } else { t = RVOMath.Dot((velocity_ - leftCutOff), cutOffVector) / sqvalue; } } KInt tLeft = RVOMath.Dot((velocity_ - leftCutOff), leftLegDirection); KInt tRight = RVOMath.Dot((velocity_ - rightCutOff), rightLegDirection); if ((t < 0 && tLeft < 0) || (obstacle1 == obstacle2 && tLeft < 0 && tRight < 0)) { /* Project on left cut-off circle. */ KInt2 unitW = RVOMath.normalize((velocity_ - leftCutOff)); line.direction = KInt2.ToInt2(unitW.IntY, -unitW.IntX); line.point = leftCutOff + radius_ * unitW / timeHorizonObst_; orcaLines_.Add(line); continue; } else if (t > 1 && tRight < 0) { /* Project on right cut-off circle. */ KInt2 unitW = RVOMath.normalize((velocity_ - rightCutOff)); line.direction = KInt2.ToInt2(unitW.IntY, -unitW.IntX); line.point = rightCutOff + radius_ * unitW / timeHorizonObst_; orcaLines_.Add(line); continue; } /* * Project on left leg, right leg, or cut-off line, whichever is * closest to velocity. */ KInt distSqCutoff = (t < 0 || t > 1 || obstacle1 == obstacle2) ? KInt.MaxValue : RVOMath.absSq(velocity_ - (leftCutOff + t * cutOffVector)); KInt distSqLeft = tLeft < 0 ? KInt.MaxValue : RVOMath.absSq(velocity_ - (leftCutOff + tLeft * leftLegDirection)); KInt distSqRight = tRight < 0 ? KInt.MaxValue : RVOMath.absSq(velocity_ - (rightCutOff + tRight * rightLegDirection)); if (distSqCutoff <= distSqLeft && distSqCutoff <= distSqRight) { /* Project on cut-off line. */ line.direction = -obstacle1.direction_; line.point = leftCutOff + radius_ * KInt2.ToInt2(-line.direction.IntY, line.direction.IntX) / timeHorizonObst_; orcaLines_.Add(line); continue; } if (distSqLeft <= distSqRight) { /* Project on left leg. */ if (isLeftLegForeign) { continue; } line.direction = leftLegDirection; line.point = leftCutOff + radius_ * KInt2.ToInt2(-line.direction.IntY, line.direction.IntX) / timeHorizonObst_; orcaLines_.Add(line); continue; } /* Project on right leg. */ if (isRightLegForeign) { continue; } line.direction = -rightLegDirection; line.point = rightCutOff + radius_ * KInt2.ToInt2(-line.direction.IntY, line.direction.IntX) / timeHorizonObst_; orcaLines_.Add(line); } int numObstLines = orcaLines_.Count; //KInt invTimeHorizon = 1 / timeHorizon_; /* Create agent ORCA lines. */ for (int i = 0; i < agentNeighbors_.Count; ++i) { Agent other = agentNeighbors_[i].Value; KInt2 relativePosition = other.position_ - position_; KInt2 relativeVelocity = velocity_ - other.velocity_; KInt distSq = RVOMath.absSq(relativePosition); KInt combinedRadius = radius_ + other.radius_; KInt combinedRadiusSq = RVOMath.sqr(combinedRadius); Line line = new Line(); KInt2 u; if (distSq > combinedRadiusSq) { /* No collision. */ KInt2 w = relativeVelocity - relativePosition / timeHorizon_; /* Vector from cutoff center to relative velocity. */ KInt wLengthSq = RVOMath.absSq(w); KInt dotProduct1 = RVOMath.Dot(w, relativePosition); if (dotProduct1 < 0 && RVOMath.sqr(dotProduct1) > combinedRadiusSq * wLengthSq) { /* Project on cut-off circle. */ KInt wLength = RVOMath.sqrt(wLengthSq); if (wLength == 0) { continue; } KInt2 unitW = w / wLength; line.direction = KInt2.ToInt2(unitW.IntY, -unitW.IntX); u = (combinedRadius / timeHorizon_ - wLength) * unitW; } else { /* Project on legs. */ KInt leg = RVOMath.sqrt(distSq - combinedRadiusSq); if (RVOMath.det(relativePosition, w) > 0) { /* Project on left leg. */ line.direction = KInt2.ToInt2(relativePosition.IntX * leg - relativePosition.IntY * combinedRadius, relativePosition.IntX * combinedRadius + relativePosition.IntY * leg) / distSq; } else { /* Project on right leg. */ line.direction = -KInt2.ToInt2(relativePosition.IntX * leg + relativePosition.IntY * combinedRadius, -relativePosition.IntX * combinedRadius + relativePosition.IntY * leg) / distSq; } KInt dotProduct2 = RVOMath.Dot(relativeVelocity, line.direction); u = dotProduct2 * line.direction - relativeVelocity; } } else { /* Collision. Project on cut-off circle of time timeStep. */ //KInt invTimeStep = 1 / Simulator.Instance.timeStep_; /* Vector from cutoff center to relative velocity. */ KInt2 w = relativeVelocity - relativePosition / Simulator.Instance.timeStep_; KInt wLength = RVOMath.abs(w); if (wLength == 0) { continue; } KInt2 unitW = w / wLength; line.direction = KInt2.ToInt2(unitW.IntY, -unitW.IntX); u = (combinedRadius / Simulator.Instance.timeStep_ - wLength) * unitW; } line.point = velocity_ + u / 2; orcaLines_.Add(line); } int lineFail = linearProgram2(orcaLines_, maxSpeed_, prefVelocity_, false, ref newVelocity_); if (lineFail < orcaLines_.Count) { linearProgram3(orcaLines_, numObstLines, lineFail, maxSpeed_, ref newVelocity_); } }
/** * <summary>Solves a one-dimensional linear program on a specified line * subject to linear constraints defined by lines and a circular * constraint.</summary> * * <returns>True if successful.</returns> * * <param name="lines">Lines defining the linear constraints.</param> * <param name="lineNo">The specified line constraint.</param> * <param name="radius">The radius of the circular constraint.</param> * <param name="optVelocity">The optimization velocity.</param> * <param name="directionOpt">True if the direction should be optimized. * </param> * <param name="result">A reference to the result of the linear program. * </param> */ private bool linearProgram1(IList <Line> lines, int lineNo, KInt radius, KInt2 optVelocity, bool directionOpt, ref KInt2 result) { KInt dotProduct = RVOMath.Dot(lines[lineNo].point, lines[lineNo].direction); KInt discriminant = RVOMath.sqr(dotProduct) + RVOMath.sqr(radius) - RVOMath.absSq(lines[lineNo].point); if (discriminant < 0) { /* Max speed circle fully invalidates line lineNo. */ return(false); } KInt sqrtDiscriminant = RVOMath.sqrt(discriminant); KInt tLeft = -dotProduct - sqrtDiscriminant; KInt tRight = -dotProduct + sqrtDiscriminant; for (int i = 0; i < lineNo; ++i) { KInt denominator = RVOMath.det(lines[lineNo].direction, lines[i].direction); KInt numerator = RVOMath.det(lines[i].direction, lines[lineNo].point - lines[i].point); if (RVOMath.fabs(denominator) <= 0) { /* Lines lineNo and i are (almost) parallel. */ if (numerator < 0) { return(false); } continue; } KInt t = numerator / denominator; if (denominator >= 0) { /* Line i bounds line lineNo on the right. */ tRight = KInt.Min(tRight, t); } else { /* Line i bounds line lineNo on the left. */ tLeft = KInt.Max(tLeft, t); } if (tLeft > tRight) { return(false); } } if (directionOpt) { /* Optimize direction. */ if (RVOMath.Dot(optVelocity, lines[lineNo].direction) > 0) { /* Take right extreme. */ result = lines[lineNo].point + tRight * lines[lineNo].direction; } else { /* Take left extreme. */ result = lines[lineNo].point + tLeft * lines[lineNo].direction; } } else { /* Optimize closest point. */ KInt t = RVOMath.Dot(lines[lineNo].direction, (optVelocity - lines[lineNo].point)); if (t < tLeft) { result = lines[lineNo].point + tLeft * lines[lineNo].direction; } else if (t > tRight) { result = lines[lineNo].point + tRight * lines[lineNo].direction; } else { result = lines[lineNo].point + t * lines[lineNo].direction; } } return(true); }