Esempio n. 1
0
        /// <summary>
        /// Gets column with number coumnnum from matrix res
        /// </summary>
        /// <param name="columnNum">Column number (zero based)</param>
        /// <returns>Vector containing copy of column's elements</returns>
        public Vector CloneColumn(int columnNum)
        {
            if (0 > columnNum || columnNum > ColumnDimension - 1)
            {
                throw new IndexOutOfRangeException("Column index is out of range");
            }
            Vector v = Vector.Zeros(RowDimension);

            for (int i = 0; i < RowDimension; i++)
            {
                v[i] = a[i][columnNum];
            }
            return(v);
        }
Esempio n. 2
0
        /// <summary>Matrix inverse for a lower triangular matrix</summary>
        /// <param name="L"></param>
        /// <returns></returns>
        public Matrix InverseLower()
        {
            int n      = this.ColumnDimension;
            var I      = Matrix.Identity(n, n);
            var invLtr = new double[n][];

            for (int col = 0; col < n; col++)
            {
                Vector x = Vector.Zeros(n);
                x[col]      = 1;
                invLtr[col] = this.SolveLower(x);
            }
            var invL = new Matrix(invLtr).Transpose();

            return(invL);
        }
Esempio n. 3
0
        /// <summary>
        /// Returns a vector whose elements are the absolute values of the given vector elements
        /// </summary>
        /// <param name="v">Vector to operate with</param>
        /// <returns>Vector v1 such that for each i = 0...dim(v) v1[i] = |v[i]|</returns>
        public Vector Abs()
        {
            if (v == null)
            {
                return(new Vector());
            }

            int    n = v.Length;
            Vector y = Vector.Zeros(n);

            for (int i = 0; i < n; i++)
            {
                y[i] = Math.Abs(v[i]);
            }
            return(y);
        }
Esempio n. 4
0
        /// <summary>Performs element-wise division of two vectors</summary>
        /// <param name="a">Numerator vector</param>
        /// <param name="b">Denominator vector</param>
        /// <returns>Result of scalar multiplication</returns>
        public static Vector operator /(Vector a, Vector b)
        {
            if (a.Length != b.Length)
            {
                throw new InvalidOperationException("Cannot element-wise divide vectors of different length");
            }
            double[] res = Vector.Zeros(a.Length);

            for (int i = 0; i < a.Length; i++)
            {
                if (b[i] == 0.0d)
                {
                    throw new DivideByZeroException("Cannot divide by zero");
                }
                res[i] = a[i] / b[i];
            }

            return(res);
        }
Esempio n. 5
0
        /// <summary>Matrix multiplication, y = v * A</summary>
        /// <param name="v">Vector</param>
        /// <returns>y</returns>
        public Vector timesRight(Vector v)
        {
            double[] vv     = v;
            Vector   result = Vector.Zeros(n);

            unchecked // Turns off integral overflow checking: small speedup
            {
                for (int i = 0; i < n; i++)
                {
                    if (indices[i] != null)
                    {
                        for (int k = 0; k < count[i]; k++)
                        {
                            result[indices[i][k]] += vv[i] * items[i][k];
                        }
                    }
                }
            }
            return(result);
        }
Esempio n. 6
0
        /// <summary>Forward substitution routine for solving Lx = b, where L is a lower-triangular matrix</summary>
        /// <param name="b"></param>
        /// <returns></returns>
        public Vector SolveLower(Vector b)
        {
            Vector x = Vector.Zeros(m);

            for (int i = 0; i < m; i++)
            {
                x[i] = b[i];
                var idx = indices[i];
                var its = items[i];
                for (int k = 0; k < count[i]; k++)
                {
                    int j = idx[k];
                    if (j < i)
                    {
                        x[i] -= its[k] * x[j];
                    }
                }
                x[i] /= this[i][i];
            }

            return(x);
        }
Esempio n. 7
0
        /// <summary>Matrix multiplication</summary>
        /// <param name="v">Vector</param>
        /// <returns></returns>
        public Vector times(Vector v)
        {
            double[] vv     = v;
            Vector   result = Vector.Zeros(m);

            unchecked // Turns off integral overflow checking: small speedup
            {
                for (int i = 0; i < m; i++)
                {
                    if (indices[i] != null)
                    {
                        double s = 0;
                        for (int k = 0; k < count[i]; k++)
                        {
                            s += items[i][k] * vv[indices[i][k]];
                        }
                        result[i] = s;
                    }
                }
            }
            return(result);
        }
Esempio n. 8
0
        /// <summary>Implementation of Runge-Kutta algoritm with per-point accurancy control from
        /// Dormand and Prince article.
        /// (J.R.Dormand, P.J.Prince, A family of embedded Runge-Kuttae formulae)</summary>
        /// <param name="t0">Left end of current time span</param>
        /// <param name="x0">Initial phase vector value</param>
        /// <param name="f">System right parts vector function</param>
        /// <param name="opts">Options used by solver</param>
        /// <example>Let our problem will be:
        /// dx/dt=y+1,
        /// dy/dt=-x+2.
        /// x(0)=0, y(0)=1.
        /// To solve it, we just have to write
        /// <code>
        /// var sol=Ode.RK547M(0,new Vector(0,1),(t,x)=>new Vector(y+1,-x+2));
        /// </code>
        /// and then enumerate solution point from <see cref="System.IEnumerable"/> 'sol'.
        /// </example>
        /// <returns>Endless sequence of solution points</returns>
        public static IEnumerable <SolPoint> RK547M(double t0, Vector x0, Func <double, Vector, Vector> f, Options opts)
        {
            // Safety factors for automatic step control
            // See Solving Ordinary Differential Equations I Non stiff problems by E. Hairer, S.P. Norsett, G.Wanner
            // 2nd edition, Springer.

            // Safety factor is recommended on page 168
            const double SafetyFactor = 0.8;
            const double MaxFactor    = 5.0d; // Maximum possible step increase
            const double MinFactor    = 0.2d; // Maximum possible step decrease
            int          Refine       = 4;

            Vector S = Vector.Zeros(Refine - 1);

            for (int i = 0; i < Refine - 1; i++)
            {
                S[i] = (double)(i + 1) / Refine;
            }

            double t  = t0;
            Vector x  = x0.Clone(); // Lower order approximation
            Vector x1 = x0.Clone(); // Higher order approximation

            int n = x0.Length;      // Dimensions of the system

            // Initial step value. During computational process, we modify it.
            double dt = opts.InitialStep;

            // Create formulae parameters(a's,b's and c's)
            // In original article, a is a step array.
            double[][] a = new double[6][];
            a[0] = new double[] { 1 / 5d };
            a[1] = new double[] { 3 / 40d, 9 / 40d };
            a[2] = new double[] { 44 / 45d, -56 / 15d, 32 / 9d };
            a[3] = new double[] { 19372 / 6561d, -25360 / 2187d, 64448 / 6561d, -212 / 729d };
            a[4] = new double[] { 9017 / 3168d, -355 / 33d, 46732 / 5247d, 49 / 176d, -5103 / 18656d };
            a[5] = new double[] { 35 / 384d, 0, 500 / 1113d, 125 / 192d, -2187 / 6784d, 11 / 84d };

            Vector c = new Vector(0, 1 / 5d, 3 / 10d, 4 / 5d, 8 / 9d, 1, 1);

            // Coeffs for higher order
            Vector b1 = new Vector(5179 / 57600d, 0, 7571 / 16695d, 393 / 640d, -92097 / 339200d, 187 / 2100d, 1 / 40d);

            // Coeffs for lower order
            Vector b = new Vector(35 / 384d, 0, 500 / 1113d, 125 / 192d, -2187 / 6784d, 11 / 84d, 0);

            const int s = 7; // == c.Length
            double    dt0;

            // Compute initial step (see E. Hairer book)
            if (opts.InitialStep == 0)
            {
                double   d0 = 0.0d, d1 = 0.0d;
                double[] sc = new double[n];
                var      f0 = f(t0, x0);
                for (int i = 0; i < n; i++)
                {
                    sc[i] = opts.AbsoluteTolerance + opts.RelativeTolerance * Math.Abs(x0[i]);
                    d0    = Math.Max(d0, Math.Abs(x0[i]) / sc[i]);
                    d1    = Math.Max(d1, Math.Abs(f0[i]) / sc[i]);
                }
                var h0 = Math.Min(d0, d1) < 1e-5 ? 1e-6 : 1e-2 * (d0 / d1);

                var    f1 = f(t0 + h0, x0 + h0 * f0);
                double d2 = 0;
                for (int i = 0; i < n; i++)
                {
                    d2 = Math.Max(d2, Math.Abs(f0[i] - f1[i]) / sc[i] / h0);
                }
                dt = Math.Max(d1, d2) <= 1e-15 ? Math.Max(1e-6, h0 * 1e-3) : Math.Pow(1e-2 / Math.Max(d1, d2), 1 / 5d);
                if (dt > 100 * h0)
                {
                    dt = 100 * h0;
                }
            }
            else
            {
                dt = opts.InitialStep;
            }
            dt0 = dt;

            // Output initial point
            double tout = t0;
            Vector xout = x0.Clone();

            if (opts.OutputStep > 0) // Store previous solution point if OutputStep is specified (non-zero)
            {
                tout += opts.OutputStep;
            }
            yield return(new SolPoint(t0, x0.Clone()));

            // Pre-allocate arrays
            Vector[] k  = new Vector[s];
            Vector[] x2 = new Vector[s - 1];
            for (int i = 0; i < s - 1; i++)
            {
                x2[i] = Vector.Zeros(n);
            }

            Vector prevX   = Vector.Zeros(n);
            double prevErr = 1.0d; // Previous error, used for step PI-filtering
            double prevDt;

            while (true) // Main loop - produces numerical solution
            {
                Vector.Copy(x1, prevX);
                double e = 0.0d; // error factor, should be < 1
                //int ii = 0;
                do
                {
                    prevDt = dt;
                    Vector.Copy(prevX, x1);
                    // Compute internal method variables.
                    k[0] = dt * f(t, x1);
                    for (int i = 1; i < s; i++)
                    {
                        Vector.Copy(x1, x2[i - 1]);
                        for (int j = 0; j < i; j++)
                        {
                            x2[i - 1].MulAdd(k[j], a[i - 1][j]);
                        }
                        k[i] = dt * f(t + dt * c[i], x2[i - 1]);
                    }
                    //Try to compute X in the next time point.
                    Vector.Copy(prevX, x);
                    for (int l = 0; l < s; l++)
                    {
                        x.MulAdd(k[l], b[l]);
                        x1.MulAdd(k[l], b1[l]);
                    }

                    // Compute error (see p. 168 of book indicated above)
                    // error compulation in L-infinity norm is commented
                    e = Math.Abs(x[0] - x1[0]) / Math.Max(opts.AbsoluteTolerance, opts.RelativeTolerance * Math.Max(Math.Abs(prevX[0]), Math.Abs(x1[0])));
                    for (int i = 1; i < n; i++)
                    {
                        e = Math.Max(e, Math.Abs(x[i] - x1[i]) / Math.Max(opts.AbsoluteTolerance, opts.RelativeTolerance * Math.Max(Math.Abs(prevX[i]), Math.Abs(x1[i]))));
                    }

                    // PI-filter. Beta = 0.08
                    dt = e == 0 ? dt : dt *Math.Min(MaxFactor, Math.Max(MinFactor, SafetyFactor *Math.Pow(1.0d / e, 1.0d / 5.0d) * Math.Pow(prevErr, 0.08d)));

                    if (opts.MaxStep < Double.MaxValue)
                    {
                        dt = Math.Min(dt, opts.MaxStep);
                    }
                    //if (opts.MinStep > 0) dt = Math.Max(dt, opts.MinStep);
                    if (Double.IsNaN(dt))
                    {
                        throw new ArgumentException("Derivatives function returned NaN");
                    }
                    if (dt < 1e-12)
                    {
                        throw new ArgumentException("Cannot generate numerical solution");
                    }
                } while(e > 1.0d); // Repeat until solving vector euclidean norm doesn't satisfy break condition

                prevErr = e;

                // Output data
                if (opts.OutputStep > 0) // Output points with specified step
                {
                    while (t <= tout && tout <= t + prevDt)
                    {
                        yield return(new SolPoint(tout, Vector.Lerp(tout, t, xout, t + prevDt, x1)));

                        tout += opts.OutputStep;
                    }
                }
                else
                if (Refine > 1)    // Output interpolated points set by Refine property
                {
                    Vector ts = Vector.Zeros(S.Length);
                    for (int i = 0; i < S.Length; i++)
                    {
                        ts[i] = t + prevDt * S[i];
                    }

                    var ys = RKinterp(S, xout, k);
                    for (int i = 0; i < S.Length; i++)
                    {
                        yield return(new SolPoint(ts[i], ys[i]));
                    }
                }
                yield return(new SolPoint(t + prevDt, x1.Clone()));

                // Update current time and state
                t = t + prevDt;
                Vector.Copy(x1, xout);
            }
        }
Esempio n. 9
0
        /// <summary>
        /// Execute predictor-corrector scheme for Nordsieck's method
        /// </summary>
        /// <param name="qcurr">current method order</param>
        /// <param name="x">system phase vector to compute</param>
        /// <param name="e0">initial error vector (en(0) in LSODE)</param>
        /// <param name="t">current time</param>
        /// <param name="xprev">initial value of phase vector</param>
        /// <param name="z0">Zn(0) in LSODE - initial History matrix value</param>
        /// <param name="dt">current step size</param>
        /// <param name="l">current Nordsieck's parameters vector</param>
        /// <param name="b">current b0 in Gear's scheme</param>
        /// <param name="tau">current step change poarameter tau(q,q)</param>
        /// <param name="zn">current Z Nordsieck's matrix to change</param>
        /// <param name="f">right parts vector</param>
        /// <param name="opts">current options</param>
        /// <returns>en - current error vector</returns>
        private static NordsieckState PredictorCorrectorScheme(NordsieckState currstate, ref bool flag, Func <double, Vector, Vector> f, Options opts)
        {
            int n = currstate.xn.Length;

            NordsieckState newstate = new NordsieckState();
            var            ecurr    = currstate.en;

            newstate.en = ecurr.Clone();
            var xcurr = currstate.xn;
            var x0    = currstate.xn;
            var zcurr = (Matrix)currstate.zn.Clone();
            var qcurr = currstate.qn;
            var qmax  = currstate.qmax;
            var dt    = currstate.dt;
            var t     = currstate.tn;
            var z0    = (Matrix)currstate.zn.Clone();

            //Tolerance computation factors
            double Cq  = Math.Pow(qcurr + 1, -1.0);
            double tau = 1.0 / (Cq * Factorial(qcurr) * l[qcurr - 1][qcurr]);

            int count = 0;

            double Dq = 0.0, DqUp = 0.0, DqDown = 0.0;
            double delta = 0.0;

            //Scaling factors for the step size changing
            //with new method order q' = q, q + 1, q - 1, respectively
            double rSame, rUp, rDown;

            var xprev  = Vector.Zeros(n);
            var gm     = Vector.Zeros(n);
            var deltaE = Vector.Zeros(n);
            var M      = Matrix.Identity(n, qmax - 1);

            if (opts.SparseJacobian == null)
            {
                Matrix J = opts.Jacobian == null?NordsieckState.Jacobian(f, xcurr, t + dt) : opts.Jacobian;

                Matrix P = Matrix.Identity(n, n) - J * dt * b[qcurr - 1];

                do
                {
                    xprev = xcurr.Clone();
                    gm    = dt * f(t + dt, xcurr) - z0.CloneColumn(1) - ecurr;
                    ecurr = ecurr + P.SolveGE(gm);
                    xcurr = x0 + b[qcurr - 1] * ecurr;

                    //Row dimension is smaller than zcurr has
                    M = ecurr & l[qcurr - 1];
                    //So, "expand" the matrix
                    var MBig = Matrix.Identity(zcurr.RowDimension, zcurr.ColumnDimension);
                    for (int i = 0; i < zcurr.RowDimension; i++)
                    {
                        for (int j = 0; j < zcurr.ColumnDimension; j++)
                        {
                            MBig[i, j] = i < M.RowDimension && j < M.ColumnDimension ? M[i, j] : 0.0d;
                        }
                    }
                    zcurr   = z0 + MBig;
                    Dq      = ecurr.ToleranceNorm(opts.RelativeTolerance, opts.AbsoluteTolerance, xprev);
                    deltaE  = ecurr - currstate.en;
                    deltaE *= (1.0 / (qcurr + 2) * l[qcurr - 1][qcurr - 1]);
                    DqUp    = deltaE.ToleranceNorm(opts.RelativeTolerance, opts.AbsoluteTolerance, xcurr);
                    DqDown  = zcurr.CloneColumn(qcurr - 1).ToleranceNorm(opts.RelativeTolerance, opts.AbsoluteTolerance, xcurr);
                    delta   = Dq / (tau / (2 * (qcurr + 2)));
                    count++;
                } while (delta > 1.0d && count < opts.NumberOfIterations);
            }
            else
            {
                SparseMatrix J = opts.SparseJacobian;
                SparseMatrix P = SparseMatrix.Identity(n, n) - J * dt * b[qcurr - 1];


                do
                {
                    xprev = xcurr.Clone();
                    gm    = dt * f(t + dt, xcurr) - z0.CloneColumn(1) - ecurr;
                    ecurr = ecurr + P.SolveGE(gm);
                    xcurr = x0 + b[qcurr - 1] * ecurr;
                    //Row dimension is smaller than zcurr has
                    M = ecurr & l[qcurr - 1];
                    //So, "expand" the matrix
                    var MBig = Matrix.Identity(zcurr.RowDimension, zcurr.ColumnDimension);
                    for (int i = 0; i < zcurr.RowDimension; i++)
                    {
                        for (int j = 0; j < zcurr.ColumnDimension; j++)
                        {
                            MBig[i, j] = i < M.RowDimension && j < M.ColumnDimension ? M[i, j] : 0.0d;
                        }
                    }
                    zcurr   = z0 + MBig;
                    Dq      = ecurr.ToleranceNorm(opts.RelativeTolerance, opts.AbsoluteTolerance, xprev);
                    deltaE  = ecurr - currstate.en;
                    deltaE *= (1.0 / (qcurr + 2) * l[qcurr - 1][qcurr - 1]);
                    DqUp    = deltaE.ToleranceNorm(opts.RelativeTolerance, opts.AbsoluteTolerance, xcurr);
                    DqDown  = zcurr.CloneColumn(qcurr - 1).ToleranceNorm(opts.RelativeTolerance, opts.AbsoluteTolerance, xcurr);
                    delta   = Dq / (tau / (2 * (qcurr + 2)));
                    count++;
                } while (delta > 1.0d && count < opts.NumberOfIterations);
            }

            //======================================

            var nsuccess = count < opts.NumberOfIterations ? currstate.nsuccess + 1 : 0;

            if (count < opts.NumberOfIterations)
            {
                flag        = false;
                newstate.zn = (Matrix)zcurr.Clone();
                newstate.xn = zcurr.CloneColumn(0);
                newstate.en = ecurr.Clone();
            }
            else
            {
                flag        = true;
                newstate.zn = (Matrix)currstate.zn.Clone();
                newstate.xn = currstate.zn.CloneColumn(0);
                newstate.en = currstate.en.Clone();
            }

            //Compute step size scaling factors
            rUp = 0.0;

            if (currstate.qn < currstate.qmax)
            {
                rUp = rUp = 1.0 / 1.4 / (Math.Pow(DqUp, 1.0 / (qcurr + 2)) + 1e-6);
            }

            rSame = 1.0 / 1.2 / (Math.Pow(Dq, 1.0 / (qcurr + 1)) + 1e-6);

            rDown = 0.0;

            if (currstate.qn > 1)
            {
                rDown = 1.0 / 1.3 / (Math.Pow(DqDown, 1.0 / (qcurr)) + 1e-6);
            }

            //======================================
            newstate.nsuccess = nsuccess >= currstate.qn ? 0 : nsuccess;
            //Step size scale operations

            if (rSame >= rUp)
            {
                if (rSame <= rDown && nsuccess >= currstate.qn && currstate.qn > 1)
                {
                    newstate.qn = currstate.qn - 1;
                    newstate.Dq = DqDown;

                    for (int i = 0; i < n; i++)
                    {
                        for (int j = newstate.qn + 1; j < qmax + 1; j++)
                        {
                            newstate.zn[i, j] = 0.0;
                        }
                    }
                    nsuccess         = 0;
                    newstate.rFactor = rDown;
                }
                else
                {
                    newstate.qn      = currstate.qn;
                    newstate.Dq      = Dq;
                    newstate.rFactor = rSame;
                }
            }
            else
            {
                if (rUp >= rDown)
                {
                    if (rUp >= rSame && nsuccess >= currstate.qn && currstate.qn < currstate.qmax)
                    {
                        newstate.qn      = currstate.qn + 1;
                        newstate.Dq      = DqUp;
                        newstate.rFactor = rUp;
                        nsuccess         = 0;
                    }
                    else
                    {
                        newstate.qn      = currstate.qn;
                        newstate.Dq      = Dq;
                        newstate.rFactor = rSame;
                    }
                }
                else
                {
                    if (nsuccess >= currstate.qn && currstate.qn > 1)
                    {
                        newstate.qn = currstate.qn - 1;
                        newstate.Dq = DqDown;

                        for (int i = 0; i < n; i++)
                        {
                            for (int j = newstate.qn + 1; j < qmax + 1; j++)
                            {
                                newstate.zn[i, j] = 0.0;
                            }
                        }
                        nsuccess         = 0;
                        newstate.rFactor = rDown;
                    }
                    else
                    {
                        newstate.qn      = currstate.qn;
                        newstate.Dq      = Dq;
                        newstate.rFactor = rSame;
                    }
                }
            }

            newstate.qmax = qmax;
            newstate.dt   = dt;
            newstate.tn   = t;
            return(newstate);
        }
Esempio n. 10
0
        /// <summary>
        /// Implementation of Gear's BDF method with dynamically changed step size and order. Order changes between 1 and 3.
        /// </summary>
        /// <param name="t0">Initial time point</param>
        /// <param name="x0">Initial phase vector</param>
        /// <param name="f">Right parts of the system</param>
        /// <param name="opts">Options for accuracy control and initial step size</param>
        /// <returns>Sequence of infinite number of solution points.</returns>
        public static IEnumerable <SolPoint> GearBDF(double t0, Vector x0, Func <double, Vector, Vector> f, Options opts)
        {
            double t = t0;
            Vector x = x0.Clone();
            int    n = x0.Length;

            double tout = t0;
            Vector xout = new Vector();

            if (opts.OutputStep > 0) // Store previous solution point if OutputStep is specified (non-zero)
            {
                xout  = x0.Clone();
                tout += opts.OutputStep;
            }

            // Firstly, return initial point
            yield return(new SolPoint(t0, x0.Clone()));

            //Initial step size.
            Vector dx = f(t0, x0).Clone();
            double dt;

            if (opts.InitialStep != 0)
            {
                dt = opts.InitialStep;
            }
            else
            {
                var tol = opts.RelativeTolerance;
                var ewt = Vector.Zeros(n);
                var ywt = Vector.Zeros(n);
                var sum = 0.0;
                for (int i = 0; i < n; i++)
                {
                    ewt[i] = opts.RelativeTolerance * Math.Abs(x[i]) + opts.AbsoluteTolerance;
                    ywt[i] = ewt[i] / tol;
                    sum    = sum + (double)dx[i] * dx[i] / (ywt[i] * ywt[i]);
                }

                dt = Math.Sqrt(tol / ((double)1.0d / (ywt[0] * ywt[0]) + sum / n));
            }

            dt = Math.Min(dt, opts.MaxStep);
            var resdt = dt;

            int qmax  = 5;
            int qcurr = 2;


            //Compute Nordstieck's history matrix at t=t0;
            Matrix zn = new Matrix(n, qmax + 1);

            for (int i = 0; i < n; i++)
            {
                zn[i, 0] = x[i];
                zn[i, 1] = dt * dx[i];
                for (int j = qcurr; j < qmax + 1; j++)
                {
                    zn[i, j] = 0.0d;
                }
            }

            var eold = Vector.Zeros(n);

            NordsieckState currstate = new NordsieckState();

            currstate.delta    = 0.0d;
            currstate.Dq       = 0.0d;
            currstate.dt       = dt;
            currstate.en       = eold;
            currstate.tn       = t;
            currstate.xn       = x0;
            currstate.qn       = qcurr;
            currstate.qmax     = qmax;
            currstate.nsuccess = 0;
            currstate.zn       = zn;
            currstate.rFactor  = 1.0d;

            bool isIterationFailed = false;

            //Can produce any number of solution points
            while (true)
            {
                // Reset fail flag
                isIterationFailed = false;

                // Predictor step
                var z0 = currstate.zn.Clone();
                currstate.zn = NordsieckState.ZNew(currstate.zn);
                currstate.en = Vector.Zeros(n);
                currstate.xn = currstate.zn.CloneColumn(0);

                // Corrector step
                currstate = PredictorCorrectorScheme(currstate, ref isIterationFailed, f, opts);

                if (isIterationFailed) // If iterations are not finished - bad convergence
                {
                    currstate.zn       = z0;
                    currstate.nsuccess = 0;
                    currstate.ChangeStep();
                }
                else // Iterations finished
                {
                    var r = Math.Min(1.1d, Math.Max(0.2d, currstate.rFactor));

                    if (currstate.delta >= 1.0d)
                    {
                        if (opts.MaxStep < Double.MaxValue)
                        {
                            r = Math.Min(r, opts.MaxStep / currstate.dt);
                        }

                        if (opts.MinStep > 0)
                        {
                            r = Math.Max(r, opts.MinStep / currstate.dt);
                        }

                        r = Math.Min(r, opts.MaxScale);
                        r = Math.Max(r, opts.MinScale);

                        currstate.dt = currstate.dt * r; // Decrease step
                        currstate.zn = NordsieckState.Rescale(currstate.zn, r);
                    }
                    else
                    {
                        // Output data
                        if (opts.OutputStep > 0) // Output points with specified step
                        {
                            while (currstate.tn <= tout && tout <= currstate.tn + currstate.dt)
                            {
                                yield return(new SolPoint(tout, Vector.Lerp(tout, currstate.tn,
                                                                            xout, currstate.tn + currstate.dt, currstate.xn)));

                                tout += opts.OutputStep;
                            }
                            Vector.Copy(currstate.xn, xout);
                        }
                        else // Output each point

                        {
                            yield return(new SolPoint(currstate.tn + currstate.dt, currstate.xn));
                        }

                        currstate.tn = currstate.tn + currstate.dt;

                        if (opts.MaxStep < Double.MaxValue)
                        {
                            r = Math.Min(r, opts.MaxStep / currstate.dt);
                        }

                        if (opts.MinStep > 0)
                        {
                            r = Math.Max(r, opts.MinStep / currstate.dt);
                        }

                        r = Math.Min(r, opts.MaxScale);
                        r = Math.Max(r, opts.MinScale);

                        currstate.dt = currstate.dt * r;

                        currstate.zn = NordsieckState.Rescale(currstate.zn, r);
                    }
                }
            }
        }
Esempio n. 11
0
        /// <summary>Solves system of linear equations Ax = b using Gaussian elimination with partial pivoting</summary>
        /// <param name="a">Elements of matrix 'A'. This array is modified during solution!</param>
        /// <param name="b">Right part 'b'. This array is also modified during solution!</param>
        /// <returns>Solution of system 'x'</returns>
        public static double[] SolveCore(double[][] a, double[] b)
        {
            if (a == null)
            {
                throw new ArgumentNullException("a");
            }
            if (b == null)
            {
                throw new ArgumentNullException("b");
            }
            int n = a.Length;

            int[]  map = Enumerable.Range(0, n).ToArray();
            Vector x   = Vector.Zeros(n);

            for (int j = 0; j < n; j++)
            {
                // Find row with largest absolute value of j-st element
                int maxIdx = 0;
                for (int i = 0; i < n - j; i++)
                {
                    if (Math.Abs(a[i][j]) > Math.Abs(a[maxIdx][j]))
                    {
                        maxIdx = i;
                    }
                }

                if (Math.Abs(a[maxIdx][j]) < 1e-12)
                {
                    throw new InvalidOperationException("Cannot apply Gauss method");
                }

                // Divide this row by max value
                for (int i = j + 1; i < n; i++)
                {
                    a[maxIdx][i] /= a[maxIdx][j];
                }
                b[maxIdx]   /= a[maxIdx][j];
                a[maxIdx][j] = 1.0;

                // Move this row to bottom
                if (maxIdx != n - j - 1)
                {
                    var temp = a[n - j - 1];
                    a[n - j - 1] = a[maxIdx];
                    a[maxIdx]    = temp;

                    var temp3 = b[n - j - 1];
                    b[n - j - 1] = b[maxIdx];
                    b[maxIdx]    = temp3;

                    var temp2 = map[n - j - 1];
                    map[n - j - 1] = map[maxIdx];
                    map[maxIdx]    = temp2;
                }

                double[] an = a[n - j - 1];
                // Process all other rows
                for (int i = 0; i < n - j - 1; i++)
                {
                    double[] aa = a[i];
                    if (aa[j] != 0)
                    {
                        for (int k = j + 1; k < n; k++)
                        {
                            aa[k] -= aa[j] * an[k];
                        }
                        b[i] -= aa[j] * b[n - j - 1];
                        aa[j] = 0;
                    }
                }
            }

            // Build answer
            for (int i = 0; i < n; i++)
            {
                double s = b[i];
                for (int j = n - i; j < n; j++)
                {
                    s -= x[j] * a[i][j];
                }
                x[n - i - 1] = s;
            }
            return(x);
        }