Esempio n. 1
0
        /// <summary>Implementation of Runge-Kutta algoritm with per-point accurancy control from
        /// Dormand and Prince article.
        /// (J.R.Dormand, P.J.Prince, A family of embedded Runge-Kuttae formulae)</summary>
        /// <param name="t0">Left end of current time span</param>
        /// <param name="x0">Initial phase vector value</param>
        /// <param name="f">System right parts vector function</param>
        /// <param name="opts">Options used by solver</param>
        /// <example>Let our problem will be:
        /// dx/dt=y+1,
        /// dy/dt=-x+2.
        /// x(0)=0, y(0)=1.
        /// To solve it, we just have to write
        /// <code>
        /// var sol=Ode.RK547M(0,new Vector(0,1),(t,x)=>new Vector(y+1,-x+2));
        /// </code>
        /// and then enumerate solution point from <see cref="System.IEnumerable"/> 'sol'.
        /// </example>
        /// <returns>Endless sequence of solution points</returns>
        public static IEnumerable <SolPoint> RK547M(double t0, Vector x0, Func <double, Vector, Vector> f, Options opts)
        {
            // Safety factors for automatic step control
            // See Solving Ordinary Differential Equations I Non stiff problems by E. Hairer, S.P. Norsett, G.Wanner
            // 2nd edition, Springer.

            // Safety factor is recommended on page 168
            const double SafetyFactor = 0.8;
            const double MaxFactor    = 5.0d; // Maximum possible step increase
            const double MinFactor    = 0.2d; // Maximum possible step decrease
            int          Refine       = 4;

            Vector S = Vector.Zeros(Refine - 1);

            for (int i = 0; i < Refine - 1; i++)
            {
                S[i] = (double)(i + 1) / Refine;
            }

            double t  = t0;
            Vector x  = x0.Clone(); // Lower order approximation
            Vector x1 = x0.Clone(); // Higher order approximation

            int n = x0.Length;      // Dimensions of the system

            // Initial step value. During computational process, we modify it.
            double dt = opts.InitialStep;

            // Create formulae parameters(a's,b's and c's)
            // In original article, a is a step array.
            double[][] a = new double[6][];
            a[0] = new double[] { 1 / 5d };
            a[1] = new double[] { 3 / 40d, 9 / 40d };
            a[2] = new double[] { 44 / 45d, -56 / 15d, 32 / 9d };
            a[3] = new double[] { 19372 / 6561d, -25360 / 2187d, 64448 / 6561d, -212 / 729d };
            a[4] = new double[] { 9017 / 3168d, -355 / 33d, 46732 / 5247d, 49 / 176d, -5103 / 18656d };
            a[5] = new double[] { 35 / 384d, 0, 500 / 1113d, 125 / 192d, -2187 / 6784d, 11 / 84d };

            Vector c = new Vector(0, 1 / 5d, 3 / 10d, 4 / 5d, 8 / 9d, 1, 1);

            // Coeffs for higher order
            Vector b1 = new Vector(5179 / 57600d, 0, 7571 / 16695d, 393 / 640d, -92097 / 339200d, 187 / 2100d, 1 / 40d);

            // Coeffs for lower order
            Vector b = new Vector(35 / 384d, 0, 500 / 1113d, 125 / 192d, -2187 / 6784d, 11 / 84d, 0);

            const int s = 7; // == c.Length
            double    dt0;

            // Compute initial step (see E. Hairer book)
            if (opts.InitialStep == 0)
            {
                double   d0 = 0.0d, d1 = 0.0d;
                double[] sc = new double[n];
                var      f0 = f(t0, x0);
                for (int i = 0; i < n; i++)
                {
                    sc[i] = opts.AbsoluteTolerance + opts.RelativeTolerance * Math.Abs(x0[i]);
                    d0    = Math.Max(d0, Math.Abs(x0[i]) / sc[i]);
                    d1    = Math.Max(d1, Math.Abs(f0[i]) / sc[i]);
                }
                var h0 = Math.Min(d0, d1) < 1e-5 ? 1e-6 : 1e-2 * (d0 / d1);

                var    f1 = f(t0 + h0, x0 + h0 * f0);
                double d2 = 0;
                for (int i = 0; i < n; i++)
                {
                    d2 = Math.Max(d2, Math.Abs(f0[i] - f1[i]) / sc[i] / h0);
                }
                dt = Math.Max(d1, d2) <= 1e-15 ? Math.Max(1e-6, h0 * 1e-3) : Math.Pow(1e-2 / Math.Max(d1, d2), 1 / 5d);
                if (dt > 100 * h0)
                {
                    dt = 100 * h0;
                }
            }
            else
            {
                dt = opts.InitialStep;
            }
            dt0 = dt;

            // Output initial point
            double tout = t0;
            Vector xout = x0.Clone();

            if (opts.OutputStep > 0) // Store previous solution point if OutputStep is specified (non-zero)
            {
                tout += opts.OutputStep;
            }
            yield return(new SolPoint(t0, x0.Clone()));

            // Pre-allocate arrays
            Vector[] k  = new Vector[s];
            Vector[] x2 = new Vector[s - 1];
            for (int i = 0; i < s - 1; i++)
            {
                x2[i] = Vector.Zeros(n);
            }

            Vector prevX   = Vector.Zeros(n);
            double prevErr = 1.0d; // Previous error, used for step PI-filtering
            double prevDt;

            while (true) // Main loop - produces numerical solution
            {
                Vector.Copy(x1, prevX);
                double e = 0.0d; // error factor, should be < 1
                //int ii = 0;
                do
                {
                    prevDt = dt;
                    Vector.Copy(prevX, x1);
                    // Compute internal method variables.
                    k[0] = dt * f(t, x1);
                    for (int i = 1; i < s; i++)
                    {
                        Vector.Copy(x1, x2[i - 1]);
                        for (int j = 0; j < i; j++)
                        {
                            x2[i - 1].MulAdd(k[j], a[i - 1][j]);
                        }
                        k[i] = dt * f(t + dt * c[i], x2[i - 1]);
                    }
                    //Try to compute X in the next time point.
                    Vector.Copy(prevX, x);
                    for (int l = 0; l < s; l++)
                    {
                        x.MulAdd(k[l], b[l]);
                        x1.MulAdd(k[l], b1[l]);
                    }

                    // Compute error (see p. 168 of book indicated above)
                    // error compulation in L-infinity norm is commented
                    e = Math.Abs(x[0] - x1[0]) / Math.Max(opts.AbsoluteTolerance, opts.RelativeTolerance * Math.Max(Math.Abs(prevX[0]), Math.Abs(x1[0])));
                    for (int i = 1; i < n; i++)
                    {
                        e = Math.Max(e, Math.Abs(x[i] - x1[i]) / Math.Max(opts.AbsoluteTolerance, opts.RelativeTolerance * Math.Max(Math.Abs(prevX[i]), Math.Abs(x1[i]))));
                    }

                    // PI-filter. Beta = 0.08
                    dt = e == 0 ? dt : dt *Math.Min(MaxFactor, Math.Max(MinFactor, SafetyFactor *Math.Pow(1.0d / e, 1.0d / 5.0d) * Math.Pow(prevErr, 0.08d)));

                    if (opts.MaxStep < Double.MaxValue)
                    {
                        dt = Math.Min(dt, opts.MaxStep);
                    }
                    //if (opts.MinStep > 0) dt = Math.Max(dt, opts.MinStep);
                    if (Double.IsNaN(dt))
                    {
                        throw new ArgumentException("Derivatives function returned NaN");
                    }
                    if (dt < 1e-12)
                    {
                        throw new ArgumentException("Cannot generate numerical solution");
                    }
                } while(e > 1.0d); // Repeat until solving vector euclidean norm doesn't satisfy break condition

                prevErr = e;

                // Output data
                if (opts.OutputStep > 0) // Output points with specified step
                {
                    while (t <= tout && tout <= t + prevDt)
                    {
                        yield return(new SolPoint(tout, Vector.Lerp(tout, t, xout, t + prevDt, x1)));

                        tout += opts.OutputStep;
                    }
                }
                else
                if (Refine > 1)    // Output interpolated points set by Refine property
                {
                    Vector ts = Vector.Zeros(S.Length);
                    for (int i = 0; i < S.Length; i++)
                    {
                        ts[i] = t + prevDt * S[i];
                    }

                    var ys = RKinterp(S, xout, k);
                    for (int i = 0; i < S.Length; i++)
                    {
                        yield return(new SolPoint(ts[i], ys[i]));
                    }
                }
                yield return(new SolPoint(t + prevDt, x1.Clone()));

                // Update current time and state
                t = t + prevDt;
                Vector.Copy(x1, xout);
            }
        }
Esempio n. 2
0
        /// <summary>
        /// Implementation of Gear's BDF method with dynamically changed step size and order. Order changes between 1 and 3.
        /// </summary>
        /// <param name="t0">Initial time point</param>
        /// <param name="x0">Initial phase vector</param>
        /// <param name="f">Right parts of the system</param>
        /// <param name="opts">Options for accuracy control and initial step size</param>
        /// <returns>Sequence of infinite number of solution points.</returns>
        public static IEnumerable <SolPoint> GearBDF(double t0, Vector x0, Func <double, Vector, Vector> f, Options opts)
        {
            double t = t0;
            Vector x = x0.Clone();
            int    n = x0.Length;

            double tout = t0;
            Vector xout = new Vector();

            if (opts.OutputStep > 0) // Store previous solution point if OutputStep is specified (non-zero)
            {
                xout  = x0.Clone();
                tout += opts.OutputStep;
            }

            // Firstly, return initial point
            yield return(new SolPoint(t0, x0.Clone()));

            //Initial step size.
            Vector dx = f(t0, x0).Clone();
            double dt;

            if (opts.InitialStep != 0)
            {
                dt = opts.InitialStep;
            }
            else
            {
                var tol = opts.RelativeTolerance;
                var ewt = Vector.Zeros(n);
                var ywt = Vector.Zeros(n);
                var sum = 0.0;
                for (int i = 0; i < n; i++)
                {
                    ewt[i] = opts.RelativeTolerance * Math.Abs(x[i]) + opts.AbsoluteTolerance;
                    ywt[i] = ewt[i] / tol;
                    sum    = sum + (double)dx[i] * dx[i] / (ywt[i] * ywt[i]);
                }

                dt = Math.Sqrt(tol / ((double)1.0d / (ywt[0] * ywt[0]) + sum / n));
            }

            dt = Math.Min(dt, opts.MaxStep);
            var resdt = dt;

            int qmax  = 5;
            int qcurr = 2;


            //Compute Nordstieck's history matrix at t=t0;
            Matrix zn = new Matrix(n, qmax + 1);

            for (int i = 0; i < n; i++)
            {
                zn[i, 0] = x[i];
                zn[i, 1] = dt * dx[i];
                for (int j = qcurr; j < qmax + 1; j++)
                {
                    zn[i, j] = 0.0d;
                }
            }

            var eold = Vector.Zeros(n);

            NordsieckState currstate = new NordsieckState();

            currstate.delta    = 0.0d;
            currstate.Dq       = 0.0d;
            currstate.dt       = dt;
            currstate.en       = eold;
            currstate.tn       = t;
            currstate.xn       = x0;
            currstate.qn       = qcurr;
            currstate.qmax     = qmax;
            currstate.nsuccess = 0;
            currstate.zn       = zn;
            currstate.rFactor  = 1.0d;

            bool isIterationFailed = false;

            //Can produce any number of solution points
            while (true)
            {
                // Reset fail flag
                isIterationFailed = false;

                // Predictor step
                var z0 = currstate.zn.Clone();
                currstate.zn = NordsieckState.ZNew(currstate.zn);
                currstate.en = Vector.Zeros(n);
                currstate.xn = currstate.zn.CloneColumn(0);

                // Corrector step
                currstate = PredictorCorrectorScheme(currstate, ref isIterationFailed, f, opts);

                if (isIterationFailed) // If iterations are not finished - bad convergence
                {
                    currstate.zn       = z0;
                    currstate.nsuccess = 0;
                    currstate.ChangeStep();
                }
                else // Iterations finished
                {
                    var r = Math.Min(1.1d, Math.Max(0.2d, currstate.rFactor));

                    if (currstate.delta >= 1.0d)
                    {
                        if (opts.MaxStep < Double.MaxValue)
                        {
                            r = Math.Min(r, opts.MaxStep / currstate.dt);
                        }

                        if (opts.MinStep > 0)
                        {
                            r = Math.Max(r, opts.MinStep / currstate.dt);
                        }

                        r = Math.Min(r, opts.MaxScale);
                        r = Math.Max(r, opts.MinScale);

                        currstate.dt = currstate.dt * r; // Decrease step
                        currstate.zn = NordsieckState.Rescale(currstate.zn, r);
                    }
                    else
                    {
                        // Output data
                        if (opts.OutputStep > 0) // Output points with specified step
                        {
                            while (currstate.tn <= tout && tout <= currstate.tn + currstate.dt)
                            {
                                yield return(new SolPoint(tout, Vector.Lerp(tout, currstate.tn,
                                                                            xout, currstate.tn + currstate.dt, currstate.xn)));

                                tout += opts.OutputStep;
                            }
                            Vector.Copy(currstate.xn, xout);
                        }
                        else // Output each point

                        {
                            yield return(new SolPoint(currstate.tn + currstate.dt, currstate.xn));
                        }

                        currstate.tn = currstate.tn + currstate.dt;

                        if (opts.MaxStep < Double.MaxValue)
                        {
                            r = Math.Min(r, opts.MaxStep / currstate.dt);
                        }

                        if (opts.MinStep > 0)
                        {
                            r = Math.Max(r, opts.MinStep / currstate.dt);
                        }

                        r = Math.Min(r, opts.MaxScale);
                        r = Math.Max(r, opts.MinScale);

                        currstate.dt = currstate.dt * r;

                        currstate.zn = NordsieckState.Rescale(currstate.zn, r);
                    }
                }
            }
        }